
Identity-Based Key Exchange Protocols without
Pairings?

Dario Fiore1?? and Rosario Gennaro2

1 École Normale Supérieure, CNRS - INRIA, Paris
dario.fiore@ens.fr

2 IBM T.J. Watson Research Center – Hawthorne, New York 10532.
rosario@us.ibm.com

Abstract. This paper presents a new identity based key agreement pro-
tocol. In id-based cryptography (introduced by Adi Shamir in [34]) each
party uses its own identity as public key and receives his secret key from
a master Key Generation Center, whose public parameters are publicly
known.
The novelty of our protocol is that it can be implemented over any cyclic
group of prime order, where the Diffie-Hellman problem is supposed to
be hard. It does not require the computation of expensive bilinear maps,
or additional assumptions such as factoring or RSA.
The protocol is extremely efficient, requiring only twice the amount of
bandwidth and computation of the unauthenticated basic Diffie-Hellman
protocol. The design of our protocol was inspired by MQV (the most
efficient authenticated Diffie-Hellman based protocol in the public-key
model) and indeed its performance is competitive with respect to MQV
(especially when one includes the transmission and verification of cer-
tificates in the MQV protocol, which are not required in an id-based
scheme). Our protocol requires a single round of communication in which
each party sends only 2 group elements: a very short message, especially
when the protocol is implemented over elliptic curves.
We provide a full proof of security in the Canetti-Krawczyk security
model for key exchange, including a proof that our protocol satisfies
additional security properties such as forward secrecy, and resistance to
reflection and key-compromise impersonation attacks.

1 Introduction

Identity-based cryptography was introduced in 1984 by Adi Shamir [34]. The goal
was to simplify the management of public keys and in particular the association
of a public key to the identity of its holder. Usually such binding of a public key
to an identity is achieved by means of certificates which are signed statements by
trusted third parties that a given public key belongs to a user. This requires users

? An extended abstract of this paper appears in the proceedings of CT-RSA 2010 [18].
?? Part of this work have been done while student at University of Catania and visiting

NYU and IBM Research.

to obtain and verify certificates whenever they want to use a specific public key,
and the management of public key certificates remains a technically challenging
problem.

Shamir’s idea was to allow parties to use their identities as public keys.
An id-based scheme works as follows. A trusted Key Generation Center (KGC)
generates a master public/secret key pair, which is known to all the users. A user
with identity ID receives from the KGC a secret key SID which is a function of
the string ID and the KGC’s secret key (one can think of SID as a signature by
the KGC on the string ID). Using SID the user can then perform cryptographic
tasks. For example in the case of id-based encryption any party can send an
encrypted message to the user with identity ID using the string ID as a public
key and the user (and only the user and the KGC) will be able to decrypt it
using SID. Note that the sender can do this even if the recipient has not obtained
yet his secret key from the KGC. All the sender needs to know is the recipient’s
identity and the public parameters of the KGC. This is the major advantage of
id-based encryption.

Id-Based Key Agreement and its Motivations. This paper is concerned
with the task of id-based key agreement. Here two parties Alice and Bob, with
identities A,B and secret keys SA, SB respectively, want to agree on a common
shared key, in an authenticated manner (i.e. Alice must be sure that once the
key is established, only Bob knows it – and viceversa). Since key agreement is
inherently an interactive protocol (both parties are “live” and ready to establish
a session) there is a smaller gain in using an id-based solution: indeed certificates
and public keys can be easily sent as part of the protocol communication.

Yet the ability to avoid sending and verifying public key certificates is a signif-
icant practical advantage (see e.g. [37]). Indeed known shortcomings of the public
key setting are the requirement of centralized certification authorities, the need
for parties to cross-certify each other (via possibly long certificate chains), and
the management of some form of large-scale coordination and communication
(possibly on-line) to propagate certificate revocation information. Identity-based
schemes significantly simplify identity management by bypassing the certifica-
tion issues. All a party needs to know in order to generate a shared key is its own
secret key, the public information of the KGC, and the identity of the commu-
nication peer (clearly, the need to know the peer’s identity exists in any scheme
including a certificate-based one).

Another advantage of identity-based systems is the versatility with which
identities may be chosen. Since identities can be arbitrary string, they can be
selected according to the function and attributes of the parties (rather than its
actual “name”). For example in vehicular networks a party may be identified
by its location (“the checkpoint at the intersection of a and b”) or in military
applications a party can be identified by its role (“platoon x commander”). This
allows parties to communicate securely with the intended recipient even without
knowing its “true” identity but simply by the definition of its function in the
network.

Finally, identities can also include additional attributes which are temporal
in nature: in particular an “expiration date” for an identity makes revocation of
the corresponding secret key much easier to achieve.

For the reasons described above, id-based KA protocols are very useful in
many systems where bandwidth and computation are at a premium (e.g. sensor
networks), and also in ad-hoc networks where large scale coordination is unde-
sirable, if not outright impossible. Therefore it is an important question to come
up with very efficient and secure id-based KA protocols.

Previous work on id-based key agreement. Following Shamir’s proposal
of the concept of id-based cryptography, some early proposals for id-based key
agreement appeared in the literature: we refer in particular to the works of
Okamoto [29] (later improved in [30]) and Gunther [22]. A new impetus to this
research area came with the breakthrough discovery of bilinear maps and their
application to id-based encryption in [5]: starting with the work of Sakai et al.
[33] a large number of id-based KA protocols were designed that use pairings
as tool. We refer the readers to [6] and [12] for surveys of these pairing-based
protocols.

The main problem with the current state of the art is that many of these
protocols lack a proof of security, and some have even been broken. Indeed only
a few (e.g., [8, 38]) have been proven according to a formal definition of security.

Our Contribution. By looking at prior work we see that provably secure id-
based KAs require either groups that admit bilinear maps [8, 38], or to work over
a composite RSA modulus [30].

This motivated us to ask the following question: can we find an efficient and
provably secure id-based KA protocol such that:

1. it that can be implemented over any cyclic group in which the Diffie-Hellman
problem is supposed to be hard. The advantages of such a KA protocol would
be several, in particular: (i) it would avoid the use of computationally expen-
sive pairing computations; (ii) it could be implemented over much smaller
groups (since we could use ’regular’ elliptic curves, rather than the ones that
admit efficient pairings computations for high security levels, or the group
Z∗N for a composite N needed for Okamoto-Tanaka).

2. it is more efficient than any KA protocols in the public key model (such as
MQV [27]), when one includes the transmission and verification of certificates
which are not required in an id-based scheme. This is a very important point
since, as we pointed out earlier in this Section, id-based KA protocols are
only relevant if they outperform PKI based ones in efficiency.

Our new protocol presented in this paper (whose description appears in Figure
1), achieves all these features.

It can be implemented over any cyclic group over which the Diffie-Hellman
problem is assumed to be hard. In addition it requires an amount of bandwidth
and computation similar to the unauthenticated basic Diffie-Hellman protocol.
Indeed our new protocol requires a single round of communication in which each
party sends just two group elements (as opposed to one in the Diffie-Hellman

The IB-KA Protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime

order q together with a random generator g ∈ G and an exponent x
$← Zq.

KGC publishes G, q, g, y = gx and two hash functions H1, H2.

Key Derivation: A user with identity U receives its private key
(rU , sU) from the KGC computed as the Schnorr’s signature of the

string U under public key y. That is rU = gkU for kU
$← Zq and

sU = kU + xH1(U, rU) mod q.

Key agreement: A and B choose ephemeral private exponents tA and tB ,
respectively.

A A, rA, uA = gtA

- B

B, rB , uB = gtB

�

z1 = (uBrBy
H1(B,rB))tA+sA z1 = (uArAy

H1(A,rA))tB+sB

z2 = utA
B z2 = utB

A

Z = H2(z1, z2)

Fig. 1. A and B share session key Z. See Section 3 for more specific details.

protocol). Each party must compute four exponentiations to compute the session
key (as opposed to two in the Diffie-Hellman protocol).

A similar favorable comparison holds with the Okamoto-Tanaka protocol in
[30]. While that protocol requires only two exponentiations, it does works over
Z∗N therefore requiring the use of a larger group size, which almost totally absorbs
the computational advantage, and immediately implies a much larger bandwidth
requirement. Detailed efficiency comparisons to other protocols in the literature
are discussed in Section 6.

We present a full proof of security of our protocol in the Canetti-Krawczyk
security model. Our results hold in the random oracle model, under the Strong
Diffie-Hellman Assumption. We also present some variations of our protocol that
can be proven secure under the basic Computational Diffie-Hellman Assumption.
Our protocol can be proven to satisfy additional desirable security properties
such as perfect forward secrecy3, and resistance to reflection and key-compromise
impersonation attacks.

3 We can prove PFS only in the case the adversary was passive in the session that
he is attacking – though he can be active in other sessions. As proven by Krawczyk
in [26], this is the best that can be achieved for 1-round protocols with implicit
authentication, such as ours.

Our Approach. The first direction we took in our approach was to attempt
to analyze the id-based KA protocols by Gunther [22] and Saeednia [32]. They
also work over any cyclic group where the Diffie-Hellman problem is assumed to
be hard, but their protocols lack a formal proof of security. While the original
protocols cannot be shown to be secure, we were able to prove the security
of modified versions of them. Nevertheless these two protocols were not very
satisfactory solutions for the problem we had set out to solve, particularly for
reasons of efficiency since they required a large number of exponentiations, which
made them less efficient than say MQV with certificates.

Our protocol improves over these two protocols by using Schnorr’s signatures
[35], rather than ElGamal, to issue secret keys to the users. The simpler structure
of Schnorr’s signatures permits a much more efficient computation of the session
key, resulting in less exponentiations and a single round protocol. Our approach
was inspired by the way the MQV protocol [27] achieves implicit authentication
of the session key. Indeed our protocol can be seen as an id-based version of the
MQV protocol.

Organization. In Section 2 we recall a few preliminary notions, such as
the Canetti-Krawczyk security model for KA protocols, and the computational
assumptions that we will use in our proofs. Our new protocol is described in
Section 3, and its proof in Section 4. Comparison to other id-based KA proto-
cols is in Section 6. The modifications and proofs of the Gunther and Saeednia
protocols are in Section 7.

2 Preliminaries

In this section we present some standard definitions needed in the rest of the
paper.

Let N the set of natural numbers. We will denote with ` ∈ N the security
parameter. The participants to our protocols are modeled as probabilistic Turing
machines whose running time is bounded by some polynomial in `. If S is a set,
we denote with s

$← S the process of selecting an element uniformly at random
from S.

Definition 1 (Negligible function). A function ε(`) is said to be negligible if
for every polynomial p(`) there exists a positive integer c ∈ N such that ∀` > c
we have ε(`) < 1/p(`).

In the following assume G to be a cyclic multiplicative group of order q where q
is a `-bit long prime. We assume that there are efficient algorithms to perform
multiplication and membership test in G. Finally we denote with g a generator
of G.

Assumption 1 (Computational Diffie-Hellman [16]) We say that the Com-
putational Diffie-Hellman (CDH) Assumption (for G and g) holds if for any
probabilistic polynomial time adversary A the probability that A on input (G, g, gu, gv)
outputs W such that W = guv is negligible in `. The probability of success of A
is taken over the uniform random choice of u, v ∈ Zq and the coin tosses of A.

The CDH Assumption has a Decisional version in which no adversary can actu-
ally recognize the value guv when given gu, gv. In the proof of our basic protocol
we are going to need the ability to perform such decisions when one of the two
elements is fixed, while still assuming that the CDH holds. The assumption be-
low basically says that the CDH Assumption still holds in the presence of an
oracle DH(U, ·, ·) that solves the decisional problem4 for a fixed U .

Assumption 2 (Strong-DH Assumption [1]) We say that the Strong-DH
(SDH) Assumption holds (for G and g) if the CDH Assumption holds even in
the presence of an oracle DH(U, ·, ·) that on input two elements V̂ , Ŵ in the
group generated by g, output ”yes” if and only if Ŵ is the Diffie-Hellman of U
and V̂ .

Finally we recall the Gap-DH assumption that is stronger than the Strong-
DH in that the oracle can be queried on an arbitrary triple (U, V,W).

Assumption 3 (Gap-DH Assumption) We say that the Gap-DH Assump-
tion holds (for G and g) if the CDH Assumption holds even in the presence of
an oracle DH(·, ·, ·) that on input three elements U = gu, V = gv,W = gw in the
group generated by g, output ”yes” if and only if W = guv.

The oracle DH for the Decisional DH problem exists for some groups G, e.g. the
ones that admit a bilinear map. We stress, however that we need the oracle only
for the proof of security, and it is not needed in the execution of the protocol by
the real-life parties. This means that we can efficiently implement our protocol
over any cyclic group G.

The question, then, is the real-life meaning of a proof under the Strong-DH
assumption when the protocol is implemented over a group G that does not
admit such oracle DH. If we prove the security of our protocol under the SDH
assumption, then if a successful adversary can be constructed one of two things
must be true:

1. either the CDH Assumption is false
2. or we have a proof that the hardness of the Decisional problem is implied by

the CDH Assumption (in other words the CDH and DDH Assumptions are
equivalent). Indeed in this case the CDH holds, and the protocol is insecure,
this means that the oracle DH cannot exists (if it existed, given that the
CDH holds, the protocol should be secure).

In other words, while proofs under the Strong-DH assumption do not necessarily
offer a constructive cryptanalysis of a conjectured hard problem in case of a
successful attack, they do offer the “dual” ability to prove the equivalence of the
CDH Assumption (with any other additional assumption required by the proof)
with the DDH Assumption over the underlying group.
4 We remark that in recent papers the name strong Diffie-Hellman assumption was

used to denote a different conjecture defined over bilinear groups [4]. In this paper,
we refer to the original terminology from [1]

2.1 Definitions for identity-based key agreement

The security of our protocols is analyzed in a version of the Canetti-Krawczyk
(CK) [9, 10] model for key agreement, adapted to the identity-based setting. We
present an informal summary of the model and we refer the reader to [9, 10] for
details.

An identity-based key-agreement protocol is runned by parties interacting in
a network where each party is identified by a unique identity which is publicly
known to all the other parties (e.g. Alice’s identity is a string IDA). In addition
there exists a trusted entity called Key Generation Center (KGC) that generates
the public parameters of the system and also issues secret keys to users associated
with their public identities, e.g. the KGC generates a secret key SKA associated
to IDA.

An instance of the protocol is called a session. The two parties participating
in the session are called its peers. Each peer maintains a session state which
contains incoming and outgoing messages and its random coins. If the session is
completed then each party outputs a session key and erases its session state. A
session may also be aborted. In this case no session key is generated.

Each party assigns an unique identifier to a session he is participating in.
For simplicity, we assume it to be the quadruple (Alice,Bob,mOut,mIn) where
Alice is the identity of the party, Bob its peer, mOut and mIn are the out-
going and incoming messages, respectively, for Alice. If Alice holds a session
(Alice,Bob,mOut,mIn) and Bob holds a session (Bob,Alice,mIn,mOut) then
the two sessions are matching.

The adversary The CK definition models a very realistic adversary which
basically controls all communication in the network. In particular it can intercept
and modify messages exchanged by parties, delay or block their delivery, inject
its own messages, schedule sessions etc. The adversary is allowed to choose the
identities of the parties, and obtain private keys from the KGC for identities of
its choice.

Finally we allow the adversary to access some of the parties’ secret informa-
tion, via the following attacks: party corruption, state-reveal queries and session-
key queries. When an adversary corrupts a party, it learns its private information
(the private key and all session states and session keys currently stored), and it
later controls its actions. In a state-reveal query to a party running a session, the
adversary learns the session state for that session (since we assume that session
states are erased at the end of the session, such query makes sense only against
sessions that are still incomplete). Finally a session-key query allows the adver-
sary to learn the session key of a complete session. A session is called exposed
if it or its matching session (if existing) is compromised by one of the attacks
above.

Security Definition Let A be a probabilistic polynomial time adversary mod-
eled as described above. Then consider the following experiment running A.

At the beginning of the game the adversary receives as input the public
parameters of the system (generated by the KGC) and then can perform all the
actions described in the section before.

At some point, A chooses a test session among all the completed and unex-
posed sessions. We toss a random bit b $← {0, 1}. If b = 0 we give A the session
key K0 of the test session. Otherwise we take a random session key K1 and
provide A with K1.

After having received Kb, the adversary can continue to perform its actions
against the protocol with the exception that it cannot expose the test session.
At the end of the game A outputs a bit b′ as its guess for b.

Definition 2. An identity-based key-agreement protocol is said to be secure if
for any PPT adversary A the following holds:

1. if two uncorrupted parties complete matching sessions then they output the
same session key with overwhelming probability;

2. the probability that A guesses the correct b in the above experiment is at most
1/2 plus a negligible fraction of the security parameter.

We define the advantage of A as AdvIB−KAA = |Pr[b = b′]− 1/2|.

Additional security properties In addition to the notion of session key se-
curity presented above, an identity-based key-agreement protocol should satisfy
other important properties: resistance to reflection attacks, forward secrecy and
resistance to key-compromise impersonation attacks.

A reflection attack occurs when an adversary can compromise a session in
which the two parties have the same identity (and the same private key). Though,
at first glance, this seems to be only of theoretical interest, there are real-life
situations in which this scenario occurs. For example consider the case when
Alice is at her office and wants to establish a secure connection with her PC at
home, therefore running a session between two computers with the same identity
and private key.

We would also like to achieve resistance to key compromise impersonation
(KCI) attacks. Suppose that the adversary learns Alice’s private key. Then, it is
trivial to see that this knowledge enables the adversary to impersonate Alice to
other parties. A KCI attack can be carried out when the knowledge of Alice’s
private key allows the adversary to impersonate another party to Alice.

Finally, Forward secrecy is probably the most important additional security
property we would like to achieve. We say that a KA protocol has forward
secrecy, if after a session is completed and its session key erased, the adversary
cannot learn it even if it corrupts the parties involved in that session. In other
words, learning the private keys of parties should not jeopardize the security of
past completed sessions.

A relaxed notion of forward secrecy (which we call weak) assumes that only
past sessions in which the adversary was passive (i.e. did not choose the mes-
sages) are not jeopardized.

3 The New Protocol IB-KA

Protocol setup. The Key Generation Center (KGC) chooses a group G of
prime order q (where q is `-bits long), a random generator g ∈ G and two
hash functions H1 : {0, 1}∗ → Zq and H2 : Zq × Zq → {0, 1}`. Then it picks a
random x

$← Zq and sets y = gx. Finally the KGC outputs the public parameters
MPK = (G, g, y,H1, H2) and keeps the master secret key MSK = x for itself.

Key Derivation. A user with identity ID receives, as its secret key, a Schnorr’s
signature [35] of the message m = ID under public key y. More specifically,
the KGC after verifying the user’s identity, creates the associated secret key as
follows. First it picks a random k

$← Zq and sets rID = gk. Then it uses the
master secret key x to compute sID = k+H1(ID, rID)x. (rID, sID) is the secret
key returned to the user. The user can verify the correctness of its secret key by
using the public key y and checking the equation gsID

?= rID · yH1(ID,rID).

A protocol session. Let’s assume that Alice wants to establish a session key
with Bob. Alice owns secret key (rA, sA) and identity A while Bob has secret
key (rB , sB) and identity B.

Alice selects a random tA
$← Zq, computes uA = gtA and sends the message

〈A, rA, uA〉 to Bob. Analogously Bob picks a random tB
$← Zq, computes uB =

gtB and sends 〈B, rB , uB〉 to Alice. After the parties have exchanged these two
messages, they are able to compute the same session key Z = H2(z1, z2). In
particular Alice computes

z1 = (uBrByH1(B,rB))tA+sA and z2 = utAB .

On the other hand Bob computes

z1 = (uArAyH1(A,rA))tB+sB and z2 = utBA .

It is easy to see that both the parties are computing the same values z1 =
g(tA+sA)(tB+sB) and z2 = gtAtB . The state of a user ID during a protocol session
contains only the fresh random exponent tID. We assume that after a session is
completed, the parties erase their state and keep only the session key.

Remark: In the next section we show that protocol IB-KA is secure under the
Strong Diffie-Hellman Assumption. However, in Section 5 we show how to modify
IB-KA to obtain security under the basic CDH Assumption, at the cost of a slight
degradation in efficiency.

4 Security Proof

We prove the security of the protocol by a usual reduction argument. More pre-
cisely we show how to reduce the existence of an adversary breaking the protocol
into an algorithm that is able to break the SDH Assumption with non-negligible
probability. The adversary is modeled as a CK attacker: (see Section 2.1 for

details): in particular it will choose a test session among the complete and un-
exposed sessions and will try to distinguish between its real session key and a
random one.

In our reduction we will make use of the General Forking Lemma, stated by
Bellare and Neven in [2]. It follows the original forking lemma of Pointcheval
and Stern [31], but, unlike that, it makes no mention of signature schemes and
random oracles. In this sense it is more general and it can be used to prove the
security of our protocol. We briefly recall it in the following.

Lemma 1 (General Forking Lemma [2]). Fix an integer Q ≥ 1 and a set
H of size |H| ≥ 2. Let B be a randomized algorithm that on input x, h1, . . . , hQ
returns a pair (J, σ) where J ∈ {0, . . . , Q} and σ is referred as side output. Let
IG be a randomized algorithm called the input generator. Let accB = Pr[J ≥ 1 :
x

$← IG, h1, . . . , hQ
$← H; (J, σ) $← B(x, h1, . . . , hQ)] be the accepting probability

of B.
The forking algorithm FB associated to B is the randomized algorithm that

takes as input x and proceeds as follows:

Algorithm FB(x)
Pick random coins ρ for B
h1, . . . , hQ

$← H

(J, σ) $← B(x, h1, . . . , hQ; ρ)
If J = 0 then return (0,⊥,⊥)
h′1, . . . , h

′
Q

$← H

(J ′, σ′) $← B(x, h1, . . . , hJ−1, h
′
J , . . . , h

′
Q; ρ)

If (J = J ′ and hJ 6= h′J) then return (1, σ, σ′)
Else return (0,⊥,⊥).

Let frk = Pr[b = 1 : x $← IG; (b, σ, σ′) $← FB(x)]. Then frk ≥ accB(accBQ − 1
|H|).

Roughly speaking the lemma says that if an algorithm B accepts with some
non-negligible probability, then a “rewind” of B is likely to accept with a poly-
nomially related probability (more specifically squared). If we look at the details
of this lemma, the intuitions are that: (1) h1, . . . , hQ can be seen as the set
of replies to random oracle queries made by the original adversary and (2) the
forking algorithm implements the rewinding. Moreover it is important that in
FB the two executions of B are run with the same random coins ρ. We defer to
[2] for the proof of the lemma.

Theorem 4. Under the Strong-DH Assumption, if we model H1 and H2 as
random oracles, then protocol IB-KA is a secure identity-based key agreement
protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking the protocol IB-KA , then we
show how to build a solver algorithm S for the CDH problem.

In our reduction we will proceed into two steps. First, we describe an inter-
mediate algorithm B (i.e. the simulator) that interacts with the IB-KA adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Strong-DH Assumption.
B receives as input a tuple (G, g, U, V), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(U, ·, ·) that on input (V̂ , Ŵ)
answers “yes” if (U, V̂ , Ŵ) is a valid DDH tuple . The side output of B is σ ∈
G×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 +Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries On input a pair (z1, z2):
If H2[z1, z2] = ⊥: choose a random string Z ∈ {0, 1}` and store
H2[z1, z2] = Z
Return H2[z1, z2] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1;H1[ID, r] = hctr
Return H1[ID, r] to A

Party Corruption When A asks to corrupt party ID 6= B, then:
ctr ← ctr + 1; s $← Zq; r = gsy−hctr

If H1[ID, r] 6= ⊥ then bad← true
Store H1[ID, r] = hctr and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB component
of Bob’s private key by picking a random kB

$← Zq and setting
rB = gkB . We observe that in this case B is not able to compute
the corresponding sB . However, since Bob is the user guessed for the
test session, we can assume that the adversary will not ask for his
secret key.

Simulating sessions First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about

these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.
Assume that Bob has a session with Charlie (whose identity is the
string C). If Charlie is an uncorrupted party this means that B will
generate the messages on his behalf. In this case B knows Charlie’s
secret key and also has chosen his ephemeral exponent tC . Thus
it is trivial to see that B has enough information to compute the
correct session key. The case when the adversary presents a mes-
sage 〈C, rC , uC〉 to Bob as coming from Charlie is more compli-
cated. Here is where B makes use of the oracle DH(y, ·, ·) to answer
a session-key query about this session. The simulator replies with a
message 〈B, rB , uB = gtB 〉 where tB is chosen by B. Recall that the
session key is H2(z1, z2) with z1 = g(sC+tC)(sB+tB) and z2 = utBC .
So z1 is the Diffie-Hellman result of the values uCgsC and uBg

sB ,
where gsC = rCy

H1(C,rC) and gsB = rBy
H1(B,rB) can be com-

puted by the simulator. Notice also that the simulator knows tB
and kB (the discrete log of rB in base g). Therefore it checks if
H2[z1, z2] = Z where z2 = utBC and DH(y, uCgsC , z̄1) = “yes′′ where
z1 = z1

(uCgsC)(kB+tB)H1(B,rB)−1 . If B finds a match then it outputs the
corresponding Z as session key for Bob. Otherwise it generates a
random ζ

$← {0, 1}` and gives it as response to the adversary. Later,
for each query (z1, z2) to H2, if (z1, z2) satisfies the equation above
it sets H2[z1, z2] = ζ and answers with ζ. This makes the oracle’s
answers consistent.
In addition observe that the simulator can easily answer any state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session Let 〈B, ρB , uB = gtB 〉 be the message
from Bob to Alice sent in the test session. We notice that such mes-
sage may be sent by the adversary who is trying to impersonate Bob.
In this case A may use a value ρB = gλB of its choice as the public
component of Bob’s private key (i.e. different than rB = gkB which B
simulated and for which it knows kB). B responds with the message
〈A, rA, uA = V 〉 as coming from Alice. Finally B provides A with a
random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr ← ctr + 1 and H1[B, ρB] = hctr
If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi
Let Z = H2(z1, z2) be the correct session key for the test session where
z1 = (uArAyH1(A,rA))(tB+λB+xhi) and z2 = utBA .

If A has success into distinguishing Z from a random value it must nec-
essarily query the correct pair (z1, z2) to the random oracle H2. This
means that B can efficiently find the pair (z1, z2) in the table H2 using
the Strong-DH oracle.

Compute τ = z1
z2(uBρByhi)sA

= ρvBW
hi

Return (i, (τ, hi))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V)
and accB be the accepting probability of B.5 Then we have that:

accB ≥
ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed
the “right” r for a corrupted party ID before corrupting it, in one of the H1

oracle queries beforehand. Since r is uniformly distributed the probability of
guessing it is 1/q, and since the adversary makes at most Q queries to H1 and
corrupts at most Qc parties (and q > 2`) we have that

accB ≥
ε

n
− Qc(Q)

2`
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Strong-DH As-
sumption. It receives as input a CDH tuple (G, g, U, V) where U = gu, V = gv

and u, v are random exponents in Zq. S is also given access to a decision oracle
DH(U, ·, ·) that on input (V̂ , Ŵ) answers “yes” if (U, V̂ , Ŵ) is a valid DH tuple .

Algorithm SDH(U,·,·)(G, g, U, V)
(b, τ, τ ′) $← F

DH(U,·,·)
B (G, g, U, V)

If b = 0 then return 0 and halt
Parse σ as (τ, h) and σ′ as (τ ′, h′)
Return W = (τ/τ ′)(h−h

′)−1

If the forking algorithm FB has success, this means that there exist random
coins ρ, an index J ≥ 1 and h1, . . . , hQ, h

′
J , . . . , h

′
Q ∈ Zq with h = hJ 6= h′J = h′

such that: the first execution of B(G, g, U, V, h1, . . . , hQ; ρ) outputs τ = ρvBW
h

where H1[B, ρB] = h; the second execution of
B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h

′
Q; ρ) outputs τ ′ = (ρ′B′)

vWh′ whereH1[B′, ρ′B′] =
h′. Since the two executions of B are the same until the response to the J-th
query to H1, then we must have B = B′ and ρB = ρ′B′ . Thus it is easy to see
that S achieves its goal by computing W = (τ/τ ′)

1
h−h′ = guv.

Finally, by the General Forking Lemma, we have that if A has non-negligible
advantage into breaking the security of IB-KA , then S’s success probability is
also non-negligible.

4.1 Additional Security Properties of IB-KA

Below we describe the additional security properties enjoyed by IB-KA .
5 We say that B accepts if it outputs (J, σ) such that J ≥ 1.

Forward secrecy The following theorem shows that the protocol IB-KA satisfies
weak forward secrecy as described in Section 2.1.

Theorem 5. Let A be a PPT adversary that is able to break the weak forward
secrecy of the IB-KA protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

Proof. For sake of contradiction let us suppose there exists a PPT adversary
A that is able to break the weak forward secrecy of the protocol IB-KA with
non-negligible advantage ε. Then we show how to build a simulator S that uses
A to solve the CDH problem with probability at least ε/nQ2. S receives as input
a tuple (G, g, U, V) where U = gu, V = gv and u, v are random exponents in Zq.
The simulator plays the role of the CDH solver and its goal it to compute the
value W = guv.

Setup. S sets up a simulated execution of the protocol, with simulated KGC,
users and sessions. First of all S defines the public parameters of the protocol
simulating the KGC. So it chooses a random x

$← Zq and sets y = gx. Then it
provides the adversary with input (G, g, y) and oracle access to H1 and H2. Since
H1 and H2 are modeled as random oracles, S can program their output. For each
input (ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID.
Since S knows the master secret key x, it can simulate the KGC in full, and

give secret keys to all the parties in the network, including answering private
key queries from the adversary.

At the beginning of the game S guesses the test session and its peers Alice
and Bob.

Simulating protocol sessions. Sessions different from the test session are
easily simulated since S knows all the information needed to compute the session
keys and answer any query (including session key and state reveal queries) from
the adversary.

Simulating the test session. We now show how to simulate the test session
in order to extract W = guv from the adversary. Since in this game the adversary
is assumed to be passive during the test session, the parties (i.e. the simulator
in this case) choose the messages exchanged in this session.

Let (A, rA, sA), (B, rB , sB) be the identity information and the secret keys
of Alice and Bob respectively (S knows these values). The simulator sets Alice’s
message as (A, rA, uA = U) while the one from Bob is (B, rB , uB = V). S
is implicitly setting tA = u, tB = v. In this case the correct session key is
Z = H2(g(sA+u)(sB+v), guv). Since H2 is modeled as a random oracle, if A has
success into distinguishing Z from a random value, it must have queried H2 on
the correct input (z1 = g(sA+u)(sB+v), z2 = guv). Thus S can choose a random
value among all the queries that it received from the adversary. Since the number

of queries Q2 is polynomially bounded, S can find the correct z2 = W with non-
negligible probability ε/nQ2. This completes the proof of this case6.

Resistance to reflection attacks A reflection attack occurs when an adver-
sary can compromise a session in which the two parties have the same identity
(and the same private key). Though, at first glance, this seems to be only of
theoretical interest, there are real-life situations in which this scenario occurs.
For example consider the case when Alice is at her office and wants to establish
a secure connection with her PC at home, therefore running a session between
two computers with the same identity and private key.

Here we extend the proof of security given in Section 4 to support reflection
attacks. We observe that in the case when the test session has a matching session
the proof remains valid even if the test session is between Bob and himself. On
the other hand, when there is no matching session we have to show a little
modification of the proof. In fact the current proof actually does not work when
the adversary sends a message with the same value rB provided by the KGC
(for which the simulator knows the discrete logarithm kB , but cannot compute
the corresponding sB). The issue is that the knowledge of sB would be needed
to extract the solution of the CDH problem.

We point out that a reflection attack using a value ρB 6= rB is captured
by the current proof. Moreover it is reasonable to assume that a honest party
refuses connections from itself that use a “wrong” key. However it is possible to
adapt the proof in this specific case. In particular we can show that a successful
run of the adversary enables the simulator to compute gu

2
instead of guv. As

showed in [28] by Maurer and Wolf, such an algorithm can be easily turned into
a solver for CDH.

In this section we show how to adapt the proof in this specific case. In par-
ticular, we show that a successful run of the adversary enables the simulator
to compute gu

2
instead of guv. As showed in [28] by Maurer and Wolf, such an

algorithm can be easily turned into a solver for CDH.
Let us consider the following modification of the proof given in Section 4.

If in the test session the adversary sends a message from Bob to Bob of type
〈B, rB , uB = gtB 〉 then the simulator picks a random e

$← Zq and replies with
message 〈B, rB , u′B = Ue〉. Let h∗ be the random oracle response to H1(B, rB).
We observe that in this case the correct session key is the hash Z = H2(z1, z2)
where z1 = g(kB+uh∗+ue)(kB+uh∗+tB) and z2 = guetB . If the adversary has success
into distinguishing Z from a random value it must necessarily query the correct
pair (z1, z2) to the random oracle H2. This means that S can efficiently find the
pair (z1, z2) in the table H2 using the Strong-DH oracle. Once it has recovered

6 We could give the simulator access to the Strong-DH oracle DH, and then S could
use it to “test” all queries to H2 to find the correct W . The reduction would be
tighter (removing the factor of Q−1

2 from the success probability) but would require
the Strong-DH Assumption also in this case.

these values, it can compute:

gu
2

=

(
z1

gk
2
BU2kBh∗UekBukB

B z2z
h∗/e
2

) 1
h∗(h∗+e)

.

Resistance to Key Compromise Impersonation Suppose that the adver-
sary learns Alice’s private key. Then, it is trivial to see that this knowledge
enables the adversary to impersonate Alice to other parties. A key compromise
impersonation (KCI) attack can be carried out when the knowledge of Alice’s
private key allows the adversary to impersonate another party to Alice.

To see that the protocol IB-KA is resistant to KCI attacks it suffices to observe
that in the proof of security, when the adversary tries to impersonate Bob to
Alice, we are able to output Alice’s private key whenever it is asked by the
adversary. This means that the proof continues to be valid even in this case.

Ephemeral Key Compromise Impersonation A recent paper by Cheng and
Ma [14] shows that our protocol is susceptible to an ephemeral key compromise
attack. Roughly speaking this attack considers the case when the adversary can
make state-reveal queries (in order to learn the ephemeral key of a user) even
in the test session. Though the paper is correct, we point out that this kind
of attack is not part of the standard Canetti-Krawczyk security model that is
considered in this paper.

5 A protocol secure under CDH

The protocol IB-KA given in section Section 3 is proven secure under the Strong-
DH Assumption. In this section we show how to modify that protocol so that its
security can be based directly on CDH. The cost is a few more exchanged ele-
ments and a few more exponentiations. We call this modified protocol 2IB− KA.

The basic idea is to use the Twin Diffie-Hellman (2DH) Assumption intro-
duced by Cash et al. in [11]. Informally 2DH states that an adversary which
is given in input random U1, U2, V ∈ G, should not be able to compute a pair
(W1,W2) such that W1 and W2 are the DH of U1, V and U2, V respectively. It
is easy to see that this assumption is equivalent to the well known CDH. The
valuable contribution of [11] was to show that its “strong” version is equivalent
to CDH too.

Informally the Strong-2DH assumption says that 2DH holds even in the pres-
ence of an oracle 2DH(U1, U2, ·, ·, ·) that solves its decisional version for fixed
U1, U2.

Therefore we modify the IB-KA protocol in such a way it can be proven secure
under the Strong-2DH Assumption. Then, since Cash et al. proved in [11] that
Strong-2DH and CDH are equivalent, we obtain a protocol secure under CDH.

In order to modify the protocol we apply the idea of “twinning” some ele-
ments so that the construction can be proven under the Strong-2DH assumption.
The new protocol is almost the same as IB-KA except for the following:

– the master public key consists of two group elements y1, y2. This means that
each user ID owns a secret key (r1ID, s

1
ID, r

2
ID, s

2
ID) which are two Schnorr’s

signatures of its identity corresponding to public keys y1, y2 respectively.
– each user ID generates two elements u1

ID = gt
1
ID , u2

ID = gt
2
ID and sends

〈r1ID, r2ID, u1
ID, u

2
ID〉.

– the session key of a session between users with identities A and B is

K = H(z11, z12, z21, z22, ω11, ω12, ω21, ω22)

where z11 = g(s1A+t1A)(s1B+t1B), z12 = g(s1A+t1A)(s2B+t2B), z21 = g(s2A+t2A)(s1B+t1B),
z22 = g(s2A+t2A)(s2B+t2B), ω11 = gt

1
At

1
B , ω12 = gt

1
At

2
B , ω21 = gt

2
At

1
B and ω22 =

gt
2
At

2
B .

It is also possible to instantiate a simpler version of this protocol in which the
public key is only y as in IB-KA . This is slightly more efficient since a user has
to send one less element. This variant can also be proven secure under the CDH
provided that the adversary is not allowed to issue state-reveal queries.

The following theorem prove the security of the above protocol.

Theorem 6. Under the CDH Assumption, if we model H1 and H2 as random
oracles, then protocol 2IB-KA is a secure identity-based key agreement protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking the protocol 2IB-KA , then we
show how to build a solver algorithm S for the CDH problem under Strong-2DH.

In our reduction we will proceed into two steps. First, we describe an inter-
mediate algorithm B (i.e. the simulator) that interacts with the IB-KA adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Strong-2DH Assumption.
B receives as input a set of random elements h1, . . . , h2Q ∈ Zq and a tuple

(q,G, g, U1, U2, V), where U1 = gu1 , U2 = gu2 , V = gv and u1, u2, v are random
exponents in Zq. The simulator is also given access to a 2DH oracle 2DH(U1, U2, ·, ·, ·)
that on input (V̂ , Ŵ1, Ŵ2) answers “yes” if (U1, V̂ , Ŵ1) and (U2, V̂ , Ŵ2) are valid
DDH tuples. The side output of B is σ ∈ G2×Z2

q or ⊥. Let n be an upper bound
to the number of sessions of the protocol run by the adversary A and Q1 and Q2

be the number of queries made by A to the random oracles H1, H2 respectively.
Moreover, let Qc be the number of users corrupted by A and Q = Q1 +Qc + 1.

Algorithm B2DH(U1,U2,·,·,·)(q,G, g, U1, U2, V, h1, . . . , h2Q)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (q,G, g, y1 = U1, y2 = U2) as the public parameters of the

protocol and simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries On input a tuple z = (z11, z12, z21, z22, ω11, ω12, ω21, ω22):
IfH2[z] = ⊥: choose a random string Z ∈ {0, 1}` and storeH2[z] = Z
Return H2[z] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1;H1[ID, r] = hctr
Return H1[ID, r] to A

Party Corruption When A asks to corrupt party ID 6= B, then:
ctr ← ctr+1; s1ID

$← Zq; r1ID = gs
1
IDy−hctr ; Store H1[ID, r1ID] = hctr

ctr ← ctr+ 1; s2ID
$← Zq; r2ID = gs

2
IDy−hctr Store H1[ID, r2ID] = hctr

If H1[ID, r1ID] 6= ⊥ or H1[ID, r2ID] 6= ⊥ then bad← true
Return (r1ID, s

1
ID, r

2
ID, s

2
ID) as ID’s private key.

For the case of Bob, the simulator simply chooses the “r components”
of Bob’s private key by picking random k1

B , k
2
B

$← Zq and setting
r1B = gk

1
B , r2B = gk

2
B . We observe that in this case B is not able to

compute the corresponding s1B , s
2
B . However, since Bob is the user

guessed for the test session, we can assume that the adversary will
not ask for his secret key. Moreover the simulator sets ctr ← ctr+ 2
and store H1[B, r1B] = hctr−1, H1[B, r2B] = hctr.

Simulating sessions First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.
Assume that Bob has a session with Charlie (whose identity is the
string C). If Charlie is an uncorrupted party this means that B will
generate the messages on behalf of him. In this case B knows Char-
lie’s secret key and also has chosen his ephemeral exponents. Thus
it is trivial to see that B has enough information to compute the
correct session key. The case when the adversary presents a message
〈C, r1C , r2C , u1

C , u
2
C〉 to Bob as coming from Charlie is more compli-

cated. Here is where B makes use of the oracle 2DH(y1, y2, ·, ·, ·) to
answer a session-key query about this session. The simulator replies
with a message 〈B, r1B , r2B , u1

B = gt
1
B , u2

B = gt
2
B 〉 where t1B and t2B are

chosen by B. Recall that the session key is

K = H(z11, z12, z21, z22, ω11, ω12, ω21, ω22).

Since the simulator knows t1B , t
2
B , k

1
B and k2

B it can check if

H2[z11, z12, z21, z22, ω11, ω12, ω21, ω22] = Z

such that all the ωij have the right form (notice that B can compute
them since it knows t1B and t2B) and 2DH(y1, y2, u1

Cg
s1C , z11, z12) =

“yes′′ and 2DH(y1, y2, u2
Cg

s2C , z21, z22) = “yes′′ where zij ’s are com-
puted as follows:

z11 =
z11

(u1
Cg

s1C)(k1
B+t1B)H1(B,r1B)−1 = g(s1C+t1C)x1 ,

z12 =
z12

(u1
Cg

s1C)(k2
B+t2B)H1(B,r2B)−1 = g(s1C+t1C)x2 ,

z21 =
z21

(u2
Cg

s2C)(k1
B+t1B)H1(B,r1B)−1 = g(s2C+t2C)x1

and z22 = z12

(u2
Cg

s2
C)(k2

B
+t2

B
)H1(B,r2

B
)−1 = g(s2C+t2C)x2 .

If B finds a match then it outputs the corresponding Z as session
key for Bob. Otherwise it generates a random ζ

$← {0, 1}` and gives
it as response to the adversary. Later, for each query to H2, if the
queried tuple z satisfies the equation above it sets H2[z] = ζ and
answers with ζ. This makes oracle’s answers consistent.
In addition observe that the simulator can easily answer to state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session Let 〈B, ρ1
B , ρ

2
B , u

1
B = gt

1
B , u2

B = gt
2
B 〉 be

the message from Bob to Alice sent in the test session. We notice that
such message may be sent by the adversary who is trying to imper-
sonate Bob. B responds with the message 〈A, r1A, r2A, u1

A = V, u2
A =

V e, 〉 (where e $← Zq) as coming from Alice. Finally B provides A
with a random session key.

Run until A halts and outputs its decision bit
If H1[B, ρ1

B] = ⊥ and H1[B, ρ2
B] = ⊥ then set ctr ← ctr+2 and H1[B, ρ1

B] =
hctr−1, H1[B, ρ2

B] = hctr
If bad = true then return (0,⊥)
Let i ∈ {1, . . . , 2Q} such that H1(B, ρ1

B) = hi and H1(B, ρ2
B) = hi+1

Let Z = H2(z11, z12, z21, z22, ω11, ω12, ω21, ω22) be the correct session key
for the test session.

If A has success into distinguishing Z from a random value it must neces-
sarily query the correct tuple to the random oracle H2. This means that
B can efficiently find such tuple in the table H2 using the Strong-DH
oracle.

Compute τ1 = z11

ω11(u1
Bρ

1
By

hi
1)s1

A
= (ρ1

B)vWhi
1 and τ2 = z12

ω12(u2
Bρ

2
By

hi+1
2)s1

A
=

(ρ2
B)vWhi+1

2

Return (i, (τ1, τ2, hi, hi+1))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (q,G, g, U1, U2, V)
and accB be the accepting probability of B. Then we have that:

accB ≥
ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed
the “right” r’s for a corrupted party ID before corrupting it, in one of the H1

oracle queries beforehand. Since r is uniformly distributed the probability of
guessing it is 1/q, and since the adversary makes at most 2Q queries to H1 and
corrupts at most Qc parties (and q > 2`) we have that

accB ≥
ε

n
− Qc(2Q)

2`
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Strong-2DH
Assumption. It receives as input a CDH tuple (q,G, g, U1, U2, V) where U1 =
gu1 , U2 = gu2 , V = gv and u1, u2, v are random exponents in Zq. S is also given
access to a decision oracle 2DH(U1, U2, ·, ·, ·) that on input (V̂ , Ŵ1, Ŵ2) answers
“yes” if (U1, V̂ , Ŵ1) and (U2, V̂ , Ŵ2) are a valid DH tuples .

Algorithm S2DH(U1,U2,·,·,·)(q,G, g, U1, U2, V)
(b, σ, σ′) $← F

2DH(U1,U2,·,·,·)
B (q,G, g, U1, U2, V)

If b = 0 then return 0 and halt
Parse σ as (τ1, τ2, h1, h2) and σ′ as (τ ′1, τ

′
2, h
′
1, h
′
2)

Return W1 = (τ1/τ ′1)(h1−h′1)
−1
,W2 = (τ2/τ ′2)(h2−h′2)

−1

If the forking algorithm FB has success, this means that there exist ran-
dom coins γ, an index J ≥ 1 and h1, . . . , h2Q, h

′
J , . . . , h

′
2Q ∈ Zq with h1 =

hJ 6= h′J = h′1 and h2 = hJ+1 6= h′J+1 = h′2 such that: the first execution
of B(q,G, g, U1, V, h1, . . . , h2Q; γ) outputs τ1 = (ρ1

B)vWh1
1 and τ2 = (ρ2

B)vWh2
2

where H1[B, ρ1
B] = h1 and H1[B, ρ2

B] = h2; the second execution of
B(q,G, g, U1, U2, V, h1, . . . , hJ−1, h

′
J , . . . , h

′
2Q; ρ) outputs τ ′1 = (ρ

′1
B′)

vW
h′1
1 and

τ ′2 = (ρ
′2
B′)

vW
h′2
2 where H1[B′, ρ

′1
B′] = h′1 and H1[B′, ρ

′2
B′] = h′2. Since the two

executions of B are the same until the response to the J-th query to H1, then we
must have B = B′, ρ1

B = ρ
′1
B′ and ρ2

B = ρ
′2
B′ . It is worth noting that responses to

H1(B, r1B) and H1(B, r2B) are always answered with consecutive values hctr and
hctr+1 respectively. Thus it is easy to see that S achieves its goal by computing

W1 = (τ1/τ ′1)
1

h1−h′1 = gu1v and W2 = (τ2/τ ′2)
1

h2−h′2 = gu2v.
Finally, by the General Forking Lemma, we have that if A has non-negligible

advantage into breaking the security of 2IB-KA , then S’s success probability is
also non-negligible.

5.1 Forward secrecy

The id-based key agreement protocol 2IB-KA described in the previous section
satisfies weak forward secrecy as proven in the following theorem.

Theorem 7. Under the 2DH Assumption, if we model H1 and H2 as random
oracles then the protocol 2IB-KA has weak forward secrecy.

Proof. For sake of contradiction let us suppose there exists a PPT adversary
A that is able to break the weak forward secrecy of the protocol 2IB-KA with
non-negligible advantage ε. Let n be an upper bound to the number of sessions
of the protocol run by A and Q1 and Q2 be the number of queries made by
the adversary to the random oracles H1, H2 respectively. Then we show how to
build a simulator S that uses A to solve the 2DH problem with probability at
least ε/nQ2. S receives as input a tuple (q,G, g, U1, U2, V) where U1 = gu1 , U2 =
gu2 , V = gv and u1, u2, v are random exponents in Zq. The simulator plays the
role of the CDH solver and its goal it to compute the values W1 = gu1v and
W2 = gu2v.

Setup. S sets up a simulated execution of the protocol, with simulated KGC,
users and sessions. First of all S defines the public parameters of the protocol
simulating the KGC. So it chooses random x1, x2

$← Zq and sets y1 = gx1 , y2 =
gx2 . Then it provides the adversary with input (q,G, g, y1, y2) and oracle access
to H1 and H2. Since H1 and H2 are modeled as random oracles, S can program
their output. For each input (ID, r) S chooses a random eID

$← Zq and sets
H1(ID, r) = eID. Similar work is done for H2.

Since S knows the master secret key (x1, x2), it can simulate the KGC in
full, and give secret keys to all the parties in the network, including answering
private key queries from the adversary. At the beginning of the game S guesses
the test session and its peers Alice and Bob.
Simulating protocol sessions. Sessions different from the test session are
easily simulated since S knows all the information needed to compute the session
keys and answer any query (including session key and state reveal queries) from
the adversary.

Simulating the test session. We now show how to simulate the test session
in order to extract W1,W2 from the adversary. Since in this game the adversary
is assumed to be passive during the test session, the parties (i.e. the simulator
in this case) choose the messages exchanged in this session.

Let (A, r1A, r
2
A, s

1
A, s

2
A), (B, r1B , r

2
B , s

1
B , s

2
B) be the identity information and the

secret keys of Alice and Bob respectively (S knows these values). The simulator
sets Alice’s message as 〈A, r1A, r2A, u1

A = U1, u
2
A = U2〉 while the one from Bob is

〈B, r1B , r2B , u1
B = V, u2

B = V d〉 (for random d
$← Zq). S is implicitly setting t1A =

u1, t
2
A = u2, t

1
B = v, t2B = vd. In this case the correct session key contains ω11 =

gu1v, ω21 = gu2v. Since H2 is modeled as a random oracle, if A has success into
distinguishing Z from a random value, it must have queried H2 on the correct
input. Thus S can choose a random value among all the queries that it received
from the adversary. Since the number of queries Q2 is polynomially bounded, S
can find the correct ω11 = W1, ω21 = W2 with non-negligible probability ε/nQ2.
This completes the proof of this case7.
7 We could give the simulator access to the Strong-2DH oracle 2DH, and then S could

use it to “test” all queries to H2 to find the correct W1,W2. The reduction would be

6 Comparisons with other IB-KA Protocols

In this section we compare IB-KA with other id-based KA protocols from the
literature. In particular, we consider the protocol by Chen and Kudla [13] (SCK-
2) (which is a modification of Smart’s [36]) and two protocols proposed very
recently by Boyd et al. [7] (BCNP1, BCNP2).

For our efficiency comparisons we consider a security parameter of 128 and
implementations of SCK-2, BCNP1 and BCNP2 with Type 3 pairings 8, which
are the most efficient pairings for this kind of security level (higher than 80).
Our protocol is assumed to be implemented in an elliptic curves group G with
the same security parameter. In this scenario elements of G and G1 need 256 bit
to be represented, while 512 bits are needed for G2 elements and 3072 bits for
an element of GT .

We estimate the computational cost of all the protocols using the costs per
operation for Type 3 pairings given by Chen et al. in [12]. The bandwidth cost is
expressed as the amount of data in bits sent by each party to complete a session
of the protocol9.

According to the work of Chen et al. [12] SCK-2 is the most efficient protocol
with a proof of security in the CK model for all types of pairings. It is proved
secure using random oracles under the Bilinear Diffie-Hellman Assumption and
requires one round of communication with only one group element sent by each
party. To be precise, we point out that the protocol of Boyd et al. (BMP) [8]
would appear computationally more efficient than SCK-2, but unfortunately it
works only in type 1 and type 4 pairings and is proven secure only in symmetric
pairings. BCNP1 and BCNP2 are generic constructions based on any CCA-
secure IB-KEM. When implemented (as suggested by the authors of [7]) using
one of the IB-KEMs by Kiltz [24], Kiltz-Galindo [25] or Gentry [21] they lead
to a two-pass single-round protocol with (CK) security in the standard model.
BCNP2 provides weak FS and resistance to KCI attacks, while BCNP1 satisfies
only the former property.

The results are summarized in Table 1 assuming protocols BCNP1 and
BCNP2 to be implemented with Kiltz’s IB-KEM (the most efficient for this
application according to the work of Boyd et al. [7]). We defer to the original
papers of SCK-2 [13] and BCNP1, BCNP2 [7] for more details about these costs.
As described in the table, our protocol has a reasonable bandwidth requirement
and achieves the best computational efficiency among the other id-based KA
protocols.

Comparison with PKI-based protocols. We also compare our protocol
to MQV [27], and its provably secure version HMQV [26], which is the most

tighter (removing the factor of Q−1
2 from the success probability) but would require

the Strong-2DH Assumption also in this case.
8 This classification of pairing groups into several types is provided by Galbraith et

al. in [19].
9 We do not consider the identity string sent with the messages as it can be implicit

and, in any way, appears in all the protocols.

weak
KCI

Standard Efficiency
FS model Bandwidth Cost per party

BCNP1 7 3 3 768 56
BCNP2 3 3 3 1024 59
SCK-2 3 3 7 256 43
IB-KA 3 3 7 512 6

Table 1. Comparisons between IB-KA protocols.

efficient protocol in the public-key setting. When comparing our protocol to
a PKI-based scheme, like MQV, we must also consider the additional cost of
sending and verifying certificates.

We measure the computation costs of the protocols in terms of the number
of exponentiations in the underlying group needed to compute the session key. If
the exponentiations is done with an exponent that is half the length of the group
size, then obviously we count it as 1/2 exponentiation. Also if an exponentiation
is done over a fixed basis, we apply precomputation schemes to speed up the
computation, e.g. [20].

Our protocol requires each party to send a single message consisting of two
group elements. To compute the session key, the parties perform 2 full expo-
nentiations over variable basis, and one half exponentiation over a fixed basis10.
For our security parameter, following [20], the latter half exponentiation can be
computed with less than 20 group multiplications, with a precomputation table
of moderate size.

In MQV, each party sends a single message consisiting of one group ele-
ment, and performs 1.5 exponentiations to compute the session key. Moreover,
in HMQV certificates are sent and verified. Here we distinguish two cases: the
certificate is based either on an RSA signature, or on a discrete-log signature,
e.g. Schnorr’s.

In the RSA case, a short exponent e.g. e = 216 + 1, is typically used, and the
verification cost is basically equivalent to the cost of the half exponentiation with
precomputation in our protocol above. Therefore in this case, MQV is faster, but
by a mere half exponentiation. The price to pay however is a massive increase
in bandwidth to send the RSA signature (i.e. 3072 bits), and the introduction
of the RSA Assumption in order to prove security of the entire scheme.

If we use a Schnorr signature for the certificate, then MQV require sending
two more group elements, and therefore its bandwidth requirement is already
worse than our protocol (by one group element). The parties then must com-
pute one full and one half exponentiation, both with fixed basis11 to verify the
certificate. This extra computational cost can be compared to an additional half
exponentiation, making the computation requirement of MQV with Schnorr cer-
tificates equivalent to that of our protocol.

In conclusion, when comparing our protocol with MQV with certificates we
find that our protocol: (i) has comparable computational cost; (ii) has better

10 Indeed since the input to the hash function H1 is randomized, we can set its output
length to be half of the length of the group size.

11 Though different basis, which means that in order to apply precomputation tech-
niques, the parties need to maintain two tables.

bandwidth (by far in the case of RSA certificates) and (iii) simplifies protocol
implementation by removing entirely the need to manage certificates and to
interact with a PKI12.

7 Security analysis of related protocols

As an additional contribution of the paper, in this section we present a formal
security analysis of two id-based KA protocols that use techniques that inspired
our work: the first by Gunther [22] and the second by Saeednia [32] (which
is is an improvement of the previous one). In particular we show variants of
these protocols that allow to prove their security in the CK model while only an
intuition of security was stated in the original works [22, 32].

7.1 Gunther’s protocol

We present a slightly different variant of Gunther’s protocol [22] which we prove
secure under the Gap-DH and KEA assumptions.

The Knowledge of Exponent Assumption (KEA) was first stated by Damg̊ard
in [15] and later discussed in [3, 23]. Let G be a group of prime order q with
generator g. Then we say that KEA holds over G if: for any efficient algorithm
A that on input (g, ga) outputs a pair (B,C) such that C = Ba there exists
an efficient “extractor” algorithm A′ that given the same input of A outputs
(B,C, b) such that C = Ba and B = gb.

The modified protocol is summarized in Figure 2. We recall that the session
key in the original protocol was just z1z2z3 and the key generation process com-
puted the hash only on the identity string H(ID). So what we change is: to hash
the session key and include the value rID when hashing the identity. Since the
key derivation process is essentially an El Gamal signature on the identity string,
the latter modification follows what Pointcheval and Stern proposed in [31] to
prove the security of the El Gamal signature scheme.

The following theorem proves the security of the protocol.

Theorem 8. If H1 and H2 are modeled as random oracles and the Gap-DH
and KEA assumptions hold, then Gunther’s protocol is a secure identity-based
key agreement protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking Gunther’s protocol, then we
show how to build a solver algorithm S for the CDH problem.

In our reduction we will proceed into two steps. First, we describe an interme-
diate algorithm B (i.e. the simulator) that interacts with the protocol adversary
A and returns a side output σ. Second, we will show how to build an algorithm
12 In the above, we did not account for the cost of verifying group membership for the

elements sent by the parties, which is necessary both in the case of MQV and our
protocol, and is the same in both protocols.

Gunther’s protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime

order q together with a random generator g ∈ G and an exponent x
$← Zq.

KGC publishes G, q, g, y = gx and two hash functions H1, H2. It distributes
to each user with identity U a private key (rU , sU) computed as follows:

rU = gk, sU = k−1(H1(U, rU)− xrU)mod q for random k
$← Zq.

Key agreement: A and B choose ephemeral private exponents tA, wA

and tB , wB , respectively.

A IDA, rA - B

IDB , rB�
uA = rtA

B , vA = gwA

-
uB = rtB

A , vB = gwB

�

z1 = usA
B z1 = (gH1(IDA,rA)/y−rA)tB

z2 = (gH1(IDB ,rB)/y−rB)tA z2 = usB
A

z3 = vwA
B z3 = vwB

A

Z = H2(z1z2z3)

Fig. 2. A and B share session key Z.

S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Gap-DH Assumption.
B receives as input a tuple (G, g, U, V), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(·, ·, ·) that on input (U, V,W)
answers “yes” if (U, V,W) is a valid DDH tuple . The side output of B is σ ∈
G2×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 +Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries On input a value z:
IfH2[z] = ⊥: choose a random string Z ∈ {0, 1}` and storeH2[z] = Z
Return H2[z] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1;H1[ID, r] = hctr
Return H1[ID, r] to A

Party Corruption When A asks to corrupt party ID 6= B, then:
ctr ← ctr + 1; d $← Zq; r = ghctryd; s = −rd−1

If H1[ID, r] 6= ⊥ then bad← true
Store H1[ID, r] = hctrs and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB component
of Bob’s private key by picking a random kB

$← Zq and setting
rB = gkB and H1[B, rB] = hctr. We observe that in this case B is
not able to compute the corresponding sB . However, since Bob is the
user guessed for the test session, we can assume that the adversary
will not ask for his secret key.

Simulating sessions First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.
Assume that Bob has a session with Charlie (whose identity is the
string C). If Charlie is an uncorrupted party this means that B will
generate the messages on behalf of him. In this case B knows Char-
lie’s secret key and also has chosen his ephemeral exponents tC , wC .
Thus it is trivial to see that B has enough information to compute
the correct session key. The case when the adversary presents mes-
sages 〈C, rC〉, 〈uC , vC〉 to Bob as coming from Charlie is more compli-
cated. Here is where B makes use of the oracle DH(·, ·, ·) to answer
a session-key query about this session. The simulator replies with
messages 〈B, rB〉, 〈uB = gtB , vB = gwB 〉 where tB and wB are cho-
sen by B. Recall that the session key is H2(z1z2z3) with z1 = usC

B ,
z2 = usB

C and z3 = gwBwC . Notice that z2 is the Diffie-Hellman
result of the values uC = rtCB and rsB

B . Since the simulator can
compute rsB

B = gH1(B,rB)−xrB , it can check if H2[z] = Z where
DH(rsB

B , uC , z̄) = “yes′′ and z̄ = z/z1z3. If B finds a match then
it outputs the corresponding Z as session key for Bob. Otherwise it
generates a random ζ

$← {0, 1}` and gives it as response to the adver-
sary. Later, for each query z to H2, if z satisfies the equation above
it sets H2[z] = ζ and answers with ζ. This makes oracle’s answers
consistent.

In addition observe that the simulator can easily answer to state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session Let 〈B, ρB〉, 〈uB = rtBA , vB = gwB 〉 be
the messages from Bob to Alice sent in the test session. We notice
that such message may be sent by the adversary who is trying to
impersonate Bob. In this case A may use a value ρB = gλB of its
choice as the public component of Bob’s private key (i.e. different
than rB = gkB which B simulated and for which it knows kB). B
responds with the messages 〈A, rA〉, 〈uA = V, vA = gwA〉 as coming
from Alice. Finally B provides A with a random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr ← ctr + 1 and H1[B, ρB] = hctr
If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi
Let Z = H2(z1z2z3) be the correct session key for the test session where
z1 = usA

B , z2 = ρ
(hi−xρB)tA
B and z3 = vwA

B .
If A has success into distinguishing Z from a random value it must neces-

sarily query the correct value z = z1z2z3 to the random oracle H2. This
means that B can efficiently find z in the table H2 using the Gap-DH
oracle.

Compute τ = z
z1z3

= V hi/λBW−ρB/λB

Return (i, (τ, hi, ρB))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V)
and accB be the accepting probability of B. Then we have that:

accB ≥
ε

n
− Pr[bad = true].

For the same argument given in Section 4 we have that

accB ≥
ε

n
− Qc(Q)

2`
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we show how to build an algorithm

S′ that exploits FB, the forking algorithm associated with the above B. Then we
will show another algorithm S that solves CDH under the Gap-DH Assumption.

Algorithm S′DH(·,·,·)(G, g, U, V)
(b, σ, σ′) $← F

DH(U,·,·)
B (G, g, U, V)

If b = 0 then return 0 and halt
Parse σ as (τ, h, ρ) and σ′ as (τ ′, h′, ρ′)
Compute V ′ = V λ

−1
B = (τ/τ ′)(h−h

′)−1
and output (V ′, ρ, τ, h).

If the forking algorithm FB has success, this means that there exist ran-
dom coins γ, an index J ≥ 1 and h1, . . . , hQ, h

′
J , . . . , h

′
Q ∈ Zq with h = hJ 6=

h′J = h′ such that: the first execution of B(G, g, U, V, h1, . . . , hQ; γ) outputs

τ = gvh/λW−ρ/λ where H1[B, ρ] = h; the second execution of
B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h

′
Q; γ) outputs τ ′ = gvh

′/λ′W−ρ
′/λ′ such that

H1[B′, ρ′] = h′. Since the two executions of B are the same until the response to
the J-th query to H1, then we must have B = B′ and ρ = ρ′ (and λ = λ′). In
other words we have an algorithm that given in input a pair (g, gv) is returning
in output (V ′, ρ = gλ) such that V ′ = gv/λ. If the KEA assumption holds then
there exists an extractor algorithm that given the same input (g, gv) outputs
(V ′, ρ, λ). Therefore we can run such algorithm to get λ. We can define S as
the algorithm that runs the corresponding extractor algorithm of S′ on its same
input and gets (V ′, ρ, λ, τ, h). Finally S can compute

W = (
τ

V λ/h
)−ρ

−1
= guv.

By the General Forking Lemma, we have that if A has non-negligible advan-
tage into breaking the security of Gunther’s protocol, then the probability that
S has success is also non-negligible.

Vulnerability to reflection attack In this section we show that Gunther’s
protocol is vulnerable to the reflection attack. We recall that this attack occurs
when an adversary tries to impersonate a party, e.g. Bob to Bob himself. In
the case of Gunther’s protocol we can restrict this attack to the case when an
adversary presents to Bob the first message containing Bob’s identity B and the
key rB . In particular, we do not consider the case in which the adversary uses
a value r′B 6= rB because one can imagine that the honest Bob (who knows his
secret key rB) refuses the connections from himself with r′B 6= rB .

In this scenario, when (the honest) Bob generates uB = gtB , vB = gwB and
the adversary sends u′B = gt

′
B , v′B = gw

′
B the session key will be (rsB

B)tB+t′BgwBw
′
B .

Thus an adversary, after seeing the message from Bob, can set u′B = gt/uB
and v′B = gw

′
B and then is able to compute the session key H(z̄) where z̄ =

(rsB

B)t · vw
′
B

B = (gH(B,rB)y−rB)t · vw
′
B

B .

Other security properties of Gunther’s protocol Following an argument
similar to that used for protocol IB-KA in Section 4.1, it is possible to show that
Gunther’s protocol is resistant to KCI attacks. Moreover we prove the following
theorem to show that it satisfies weak forward secrecy.

Theorem 9. Let A be a PPT adversary that is able to break the weak forward
secrecy of Gunther’s protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

In the following we show how to build an efficient algorithm S that can solve
the CDH problem.

S receives as input a tuple (G, q, g, U = gu, V = gv) and wants to compute
W = guv. First S simulates the KGC setting up the public parameters of the
protocol. It chooses a random x

$← Zq and sets y = gx. Then it provides the
adversary with input (G, q, g, y) and oracle access to H1 and H2. Since H1 and
H2 are modeled as random oracles, S can program their output. For each input
(ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID. Similar
work is done for H2.

The adversary is allowed to ask the KGC for the secret keys of users of its
choice and thus S must be able to simulate the key derivation process. As one
can notice, when the adversary asks for the secret key of a user, the simulator
is always able to respond, since it has chosen the master secret key x by itself.

At the beginning of the game S guesses the test session and its holder (let us
call him Bob). Also let Alice be the other party of the session. If n is an upper
bound to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

Without loss of generality we assume that the test session is at Bob (thus the
corresponding matching session is at Alice). Since we are in the case when the
adversary is passive during the execution of the protocol, the simulator chooses
the messages exchanged in the test session.

Let (A, rA, sA), (B, rB , sB) be the identity informations and the secret keys
of Alice and Bob respectively. The simulator uses these values to create the first
two messages between the parties. To generate the other ones S chooses random
tA, tB

$← Zq and sets 〈uA = rtAB , vA = U〉 and 〈uB = rtBA , vB = V 〉. Thus S is
implicitly setting wA = u,wB = v. Since H2 is modeled as a random oracle, if
the adversary has success into distinguishing the real session key from a random
value, it must have queried H2 on the correct input z̄ = usA

B usB

A guv. Thus S can
choose a random value among all the queries that it received from the adversary
and then extract W = z̄/(usA

B usB

A) from it. In conclusion S can find W with
non-negligible probability ε/nQ2. This completes the proof of this case.

Remark 1. If we would assume the simulator having access to a Gap-DH ora-
cle, S might use the oracle to test, for all queries z made by the adversary, if
DH(U, V, z3) = “yes′′ (where z3 is computed as z/z1z2) and then output z3 for
which the test is satisfied. In this case the security of Gunther’s protocol would
reduce to the Gap-DH Assumption instead of CDH, but we would not have the
Q2 loss factor.

7.2 Saeednia’s protocol

Saeednia proposed in [32] a variant of Gunther’s protocol that allows to reduce
to 2 the number of messages exchanged by the parties. The idea of Saeednia was
basically to use a different equation for computing the El Gamal signature to
generate users’ keys. Here we propose a variant of Saeednia’s protocol that can
be proved secure in the CK model under the Gap-DH assumption. The modified
protocol is summarized in Figure 3.

Saeednia’s protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime

order q together with a random generator g ∈ G and an exponent x
$← Zq.

KGC publishes G, q, g, y = gx and two hash functions H1, H2. It distributes
to each user with identity U a private key (rU , sU) computed as follows:

rU = gk, sU = kH1(U, rU) + xrU mod q for random k
$← Zq.

Key agreement: A and B choose ephemeral private exponents tA and tB ,
respectively.

A IDA, rA, uA = gtA

- B

IDB , rB , uB = gtB

�

z1 = usA
B z1 = (r

H1(IDA,rA)
A yrA)tB

z2 = (r
H1(IDB ,rB)
B yrB)tA z2 = usB

A

z3 = utA
B z3 = utB

A

Z = H2(z1z2, z3)

Fig. 3. A and B share session key Z.

We did almost the same modifications proposed for Gunther’s protocol in
Section 7.1, namely adding the value r when hashing the identity and hashing
the session key. We recall that the session key in the original version of the
protocol is the value z1z2z3 where z3 is needed to obtain (weak) FS. In our
variant we include z3 in the hash of the session key as H2(z1z2, z3).

The following theorem proves the security of the modified Saeednia’s proto-
col.

Theorem 10. If H1 and H2 are modeled as random oracles and the Gap-DH
assumption holds, then Saeednia’s protocol is a secure identity-based key agree-
ment protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking Saeednia’s protocol, then we
show how to build a solver algorithm S for the CDH problem.

In our reduction we will proceed into two steps. First, we describe an interme-
diate algorithm B (i.e. the simulator) that interacts with the protocol adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Gap-DH Assumption.
B receives as input a tuple (G, g, U, V), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The

simulator is also given access to a DH oracle DH(·, ·, ·) that on input (U, V,W)
answers “yes” if (U, V,W) is a valid DDH tuple . The side output of B is σ ∈
G2×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 +Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries On input a pair (z, z3):
If H2[z, z3] = ⊥: choose a random string Z ∈ {0, 1}` and store
H2[z, z3] = Z
Return H2[z, z3] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1;H1[ID, r] = hctr
Return H1[ID, r] to A

Party Corruption When A asks to corrupt party ID 6= B, then:
ctr ← ctr + 1; e $← Zq; r = geyhctr ; s = −erd−1

If H1[ID, r] 6= ⊥ then bad← true
Store H1[ID, r] = −rh−1

ctr and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB component
of Bob’s private key by picking a random kB

$← Zq and setting
rB = gkB . Moreover it sets H1[B, rB] = hctr. We observe that in this
case B is not able to compute the corresponding sB . However, since
Bob is the user guessed for the test session, we can assume that the
adversary will not ask for his secret key.

Simulating sessions First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.
Assume that Bob has a session with Charlie (whose identity is the
string C). If Charlie is an uncorrupted party this means that B will
generate the messages on behalf of him. In this case B knows Char-
lie’s secret key and also has chosen his ephemeral exponent tC . Thus
it is trivial to see that B has enough information to compute the

correct session key. The case when the adversary present a message
〈C, rC , uC〉 to Bob as coming from Charlie is more complicated. Here
is where B makes use of the oracle DH(·, ·, ·) to answer a session-
key query about this session. The simulator replies with the message
〈B, rB , uB = gtB 〉 where tB is chosen by B. Recall that the session
key is H2(z1z2, z3) with z1 = usC

B , z2 = usB

C and z3 = guBuC . No-
tice that z2 is the Diffie-Hellman result of the values uC and gsB ,
where gsB = r

H1(B,rB)
B yrB . Since the simulator can compute z1 and

z3 = utBC , it can check if H2[z, z3] = Z where DH(gsB , uC , z̄) = “yes′′

and z̄ = z/z1. If B finds a match then it outputs the corresponding Z
as session key for Bob. Otherwise it generates a random ζ

$← {0, 1}`
and gives it as response to the adversary. Later, for each query (z, z3)
to H2, if z satisfies the equation above it sets H2[z, z3] = ζ and an-
swers with ζ. This makes oracle’s answers consistent.
In addition observe that the simulator can easily answer to state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session Let 〈B, ρB , uB = gtB 〉 be the message
from Bob to Alice sent in the test session. We notice that such mes-
sage may be sent by the adversary who is trying to impersonate Bob.
In this case A may use a value ρB = gλB of its choice as the public
component of Bob’s private key (i.e. different than rB = gkB which B
simulated and for which it knows kB). B responds with the message
〈A, rA, uA = V 〉 as coming from Alice. Finally B provides A with a
random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr ← ctr + 1 and H1[B, ρB] = hctr
If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi
Let Z = H2(z1z2, z3) be the correct session key for the test session where
z1 = usA

B , z2 = g(λBhi+xρB)tA and z3 = utAB .
If A has success into distinguishing Z from a random value it must neces-

sarily query the correct value (z1z2, z3) to the random oracle H2. This
means that B can efficiently find such a pair in the table H2 using the
Gap-DH oracle.

Compute τ = z
z1

= V λBhiW ρB

Return (i, (τ, hi, ρB))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V)
and accB be the accepting probability of B. Then we have that:

accB ≥
ε

n
− Pr[bad = true].

For the same argument of Section 4 we have that

accB ≥
ε

n
− Qc(Q)

2`

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Gap-DH Assump-
tion. It receives in input a CDH tuple (G, g, U, V) where U = gu, V = gv and u, v
are random exponents in Zq. S is also given access to a decision oracle DH(·, ·, ·)
that on input (U, V,W) answers “yes” if (U, V,W) is a valid DH tuple .

Algorithm SDH(·,·,·)(q,G, g, U, V)
(b, σ, σ′) $← F

DH(U,·,·)
B (G, g, U, V)

If b = 0 then return 0 and halt
Parse σ as (τ, h, ρ) and σ′ as (τ ′, h′, ρ′)
Compute ω = (τ/τ ′)(h−h

′)−1
and output W = (τ

ωh)ρ
−1

.

If the forking algorithm FB has success, this means that there exist random
coins γ, an index J ≥ 1 and h1, . . . , hQ, h

′
J , . . . , h

′
Q ∈ Zq with h = hJ 6= h′J = h′

such that: the first execution of B(G, g, U, V, h1, . . . , hQ; γ) outputs τ = V hλW ρ

where H1[B, ρ] = h; the second execution of
B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h

′
Q; γ) outputs τ ′ = V h

′λ′W ρ′ whereH1[B′, ρ′] =
h′. Since the two executions of B are the same until the response to the J-th
query to H1, then we must have B = B′ and ρ = ρ′ (and λ = λ′). Therefore it
is easy to see that S compute W = guv.

By the General Forking Lemma, we have that if A has non-negligible advan-
tage into breaking the security of Saeednia’s protocol, then the probability that
S has success is also non-negligible.

Other security properties of Saeednia’s protocol Saeednia’s protocol with
the modifications presented above satisfies resistance to KCI and reflection at-
tacks. To see this, it is possible to observe that the same arguments given in
Section 4.1 for the IB-KA protocol apply to this case. In particular, resistance
to reflection attacks can be proven under the Square-DH assumption as well,
namely we can build an algorithm that computes gu

2
when given in input g, gu.

Moreover we can prove the following theorem to show that the protocol has
weak forward secrecy.

Theorem 11. Let A be a PPT adversary that is able to break the weak forward
secrecy of Saeednia’s protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

In the following we show how to build an efficient algorithm S that can solve
the CDH problem.

S receives as input a tuple (G, q, g, U = gu, V = gv) and wants to compute
W = guv. First S simulates the KGC setting up the public parameters of the

protocol. It chooses a random x
$← Zq and sets y = gx. Then it provides the

adversary with input (G, q, g, y) and oracle access to H1 and H2. Since H1 and
H2 are modeled as random oracles, S can program their output. For each input
(ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID. Similar
work is done for H2.

The adversary is allowed to ask the KGC for the secret keys of users of its
choice and thus S must be able to simulate the key derivation process. As one
can notice, when the adversary asks for the secret key of a user, the simulator
is always able to respond, since it has chosen the master secret key x by itself.

At the beginning of the game S guesses the test session and its holder (let us
call him Bob). Also let Alice be the other party of the session. Sessions different
from the test session are easily simulated since S knows all the informations
needed to compute the session keys and answer to session key queries.

Without loss of generality we assume that the test session is at Bob (and
thus the corresponding matching session is at Alice). Since we are in the case
when the adversary is passive during the execution of the protocol, the simulator
chooses the messages of the test session.

Let (A, rA, sA), (B, rB , sB) be the identity informations and the secret keys of
Alice and Bob respectively. The simulator sets Alice’s message as (A, rA, uA = U)
while the one from Bob is (B, rB , uB = V). S is implicitly setting tA = u, tB =
v. Since H2 is modeled as a random oracle, if the adversary has success into
distinguishing the real session key from a random value, it must have queried
H2 on the correct input (z = usA

B usB

A , z3 = guv). Thus S chooses a random value
among all the queries that it received from the adversary. Since the number
of queries Q2 is polynomially bounded, the simulator can find z3 = W with
non-negligible probability ε/nQ2. This completes the proof of this case.

Remark 2. If we would assume the simulator having access to a Gap-DH oracle,
S might use the oracle to test, for all queries (z, z3) made by the adversary, if
DH(U, V, z3) = “yes′′ and then output z3 for which the test is true. In this case
the security of Saeednia’s protocol would reduce to the Gap-DH Assumption
instead of CDH, but we would not have the Q2 loss factor.

Acknowledgements

The authors would like to thank Gregory Neven for suggesting the use of the
General Forking Lemma.

References

1. M. Abdalla, M. Bellare and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In proceedings of CT-RSA 2001, LNCS vol. 2020, pp.
143-158.

2. M. Bellare and G. Neven. New Multi-Signature Schemes and a General Forking
Lemma. In proceedings of the 13th Conference on Computer and Communications
Security – ACM CCS 2006, ACM Press, 2006.

3. M. Bellare and A. Palacio. The Knowledge-of-Exponent Assumptions and 3-round
Zero-Knowledge Protocols. Advances in Cryptology – CRYPTO 2004, LNCS vol.
3152.

4. Dan Boneh, Xavier Boyen. Short Signatures without Random Oracles. Advances
in Cryptology – Eurocrypt 2004, LNCS vol. 3027.

5. Dan Boneh, Matthew K. Franklin. Identity-Based Encryption from the Weil Pair-
ing. SIAM J. Comput. 32(3): 586-615 (2003) (Also in CRYPTO 2001.)

6. Colin Boyd, Kim-Kwang Raymond Choo. Security of Two-Party Identity-Based
Key Agreement. Mycrypt 2005: 229-243

7. Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, Kenneth G. Paterson. Efficient
One-Round Key Exchange in the Standard Model. In proceedings of ACISP 2008,
LNCS vol. 5107, pp. 69-83

8. Colin Boyd, Wenbo Mao, Kenneth G. Paterson. Key Agreement Using Statically
Keyed Authenticators. In proceedings of ACNS 2004, LNCS vol. 3089, pp. 248-262

9. R. Canetti, H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels. Advances in cryptology – EUROCRYPT 2001, LNCS
vol. 2045, pp. 453-474

10. R. Canetti, H. Krawczyk. Universally Composable Notions of Key Exchange and
Secure Channels. Advances in cryptology – EUROCRYPT 2002, LNCS vol. 2332,
pp. 337-351

11. D. Cash, E. Kiltz and V. Shoup. The Twin Diffie-Hellman Problem and Applica-
tions Advances in cryptology – EUROCRYPT 2008, LNCS vol. 4965, pp. 127-145.

12. L. Chen, Z. Cheng, Nigel P. Smart. Identity-based key agreement protocols from
pairings. Int. J. Inf. Sec. 6(4): 213-241 (2007)

13. L. Chen and C. Kudla. Identity Based Authenticated Key Agreement Protocols
from Pairings In 16th IEEE Computer Security Foundations Workshop - CSFW
2003, pages 219-233. IEEE Computer Society Press, 2003.

14. Q. Cheng and C. Ma. Ephemeral Key Compromise Attack on the IB-KA protocol.
Cryptology Eprint Archive, Report 2009/568. http://eprint.iacr.org/2009/568.

15. I. Damg̊ard. Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. Advances in Cryptology – CRYPTO’91, LNCS vol. 576.

16. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 1976, vol. 22, n. 6 , pp. 644-654

17. A. Fiat and A. Shamir How to Prove Yourself: Practical Solutions of Identification
and Signature Problems. Advances in cryptology – CRYPTO 1986, LNCS vol. 263,
pp. 186-194

18. D. Fiore and R. Gennaro. Making the diffie-hellman protocol identity-based.
In Proceedings of CT-RSA 2010. LNCS. Springer-Verlag. to appear – also in
http://eprint.iacr.org/2009/174.

19. S.D. Galbraith, K.G. Paterson and N.P. Smart. Pairings for Cryptographers. Cryp-
tology ePrint Archive, Report 2006/165, 2006. http://eprint.iacr.org.

20. C.H. Lim and P.J. Lee More Flexible Exponentiation with Precomputation In
Crypto’94, pp.95–107, LNCS no. 839.

21. C. Gentry. Practical Identity-Based Encryption Without Random Oracles. Ad-
vances in cryptology – proceedings of EUROCRYPT 2006, 2006, LNCS vol. 4004,
pp. 494-510

22. Gunther, C.G. An Identity-Based Key-Exchange Protocol. Advances in cryptology
– proceedings of EUROCRYPT 1989, 1989, LNCS, vol. 434, pp. 29-37.

23. S. Hada and T. Tanaka. On the Existence of 3-round Zero-Knowledge Protocols.
Advances in Cryptology – CRYPTO 1998, LNCS vol. 1462

24. E. Kiltz. Direct Chosen-Ciphertext Secure Identity-Based Encryption in the Stan-
dard Model with short Ciphertexts. Cryptology Eprint Archive, Report 2006/122.
http://eprint.iacr.org/2006/122.

25. E. Kiltz and D. Galindo. Direct Chosen-Ciphertext Secure Identity-Based Key
Encapsulation Without Random Oracles. Cryptology Eprint Archive, Report
2006/034. http://eprint.iacr.org/2006/034.

26. Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol.
Advances in cryptology – CRYPTO 2005, LNCS vol. 3621, pp. 546-566

27. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient Protocol for
Authenticated Key Agreement. Designs, Codes and Cryptography, 28, 119-134,
2003.

28. U. Maurer and S. Wolf. Diffie-Hellman oracles. Advances in cryptology – CRYPTO
1996, LNCS vol. 1109, pp. 268-282

29. E. Okamoto. Key Distribution Systems Based on Identification Information. In
Advances in Cryptology, Crypto 1987, pp. 194-202. LNCS Vol. 293/1988.

30. E. Okamoto and K. Tanaka. Key Distribution System Based on Identification.
Information. IEEE Journal on Selected Areas in Communications, 7(4):481-485,
May 1989.

31. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, 13(3):361-396 (2000).

32. S. Saeednia. Improvement of Gunther’s identity-based key exchange protocol. Elec-
tonics Letters vol. 36, Issue 18, 31 Aug 2000, pp. 1535 - 1536

33. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

34. Adi Shamir Identity-Based Cryptosystems and Signature Schemes Advances in
Cryptology – Proceedings of CRYPTO ’84, 1985, pp. 47-53

35. C.P. Schnorr. Efficient identification and signatures for smart cards. Advances in
Cryptology – CRYPTO ’89, 1989, LNCS vol. 435, pp. 239-252

36. N. P. Smart. An identity-based authenticated key-agreement protocol based on
the Weil pairing. Electronics letters, 2002, vol. 38, pp.630-632.

37. D.K. Smetters, G. Durfee. Domain-based Administration of Identity-Based Cryp-
tosystems for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th
Conference on USENIX Security Symposium, p. 15. USENIX Association (2003)

38. Y. Wang. Efficient Identity-Based and Authenticated Key Agree-
ment Protocol. Cryptology ePrint Archive, Report 2005/108, 2005.
http://eprint.iacr.org/2005/108/.

