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Abstract. This paper presents some theoretical and experimental re-
sults about off-line/on-line digital signatures. The goal of this type of
schemes is to reduce the time used to compute a signature using some
kind of preprocessing. They were introduced by Even, Goldreich and Mi-
cali and constructed by combining regular digital signatures with efficient
one-time signatures. Later Shamir and Tauman presented an alternative
construction (which produces shorter signatures) by combining regular
signatures with chameleon hash functions.
We first unify the Shamir-Tauman and Even et al. approaches by showing
that they can be considered different instantiations of the same paradigm.
We do this by showing that the one-time signatures needed in the Even
et al. approach only need to satisfy a weak notion of security. We then
show that chameleon hashing are in effect a type of one-time signatures
which satisfy this weaker security notion.
In the process we study the relationship between one-time signatures
and chameleon hashing, and we prove that a special type of chameleon
hashing (which we call two-trapdoor) is a fully secure one-time signature.
Finally we ran experimental tests using OpenSSL libraries to test the
difference between the two approaches. In our implementation we make
extensive use of the observation that off-line/on-line digital signatures
do not require collision-resistant hash functions to compress the mes-
sage, but can be safely implemented with universal one-way hashing in
both the off-line and the on-line step. The main application of this obser-
vation is that both the steps can be applied to shorter digests. This has
particular relevance if block-ciphers or hash functions based one-time
signatures are used since these are very sensitive to the length of the
message. Interestingly, we show that (mostly due to the above observa-
tion about hashing), the two approaches are comparable in efficiency and
signature length.

1 Introduction

Off-line/On-line digital signatures were introduced by Even, Goldreich and Mi-
cali in [12]. In these signatures the signing process is divided in two parts. First
? An extended abstract of this paper appears in the proceedings of PKC 2008



a computationally intensive part is performed off-line, i.e. before the message
being signed is known. This off-line part produces some temporary data which
is stored and then used at the time the message to be signed is known. At that
point, the computation of the actual signature requires very little effort.

The original construction in [12] was based on combining two different types
of digital signatures: many-times (or “regular”) signatures and one-time signa-
tures [24, 21, 2, 22, 26]. While the former can be used to sign a polynomial number
of messages, in the latter a private key can be used to sign only a single mes-
sage. Because of this limitation, one-time signatures can be constructed more
efficiently. The construction in [12] goes as following. The signer generates a pair
(VK, SK) of keys for a regular signature scheme: she publishes VK and keeps
SK as a secret. In the off-line part she generates vk a one-time public verifica-
tion key, and signs it with SK: let S be the resulting signature. Then when the
message m is available, the signer computes its signature s with the one-time
signing key sk. The final signature is (vk, S, s).

The construction in [12] utilizes one-way functions based one-time signatures,
such as the ones introduced by Lamport [20]. While these signatures are very
fast to compute and verify, the signature string can be very long, and it grows
quadratically with the length of the message being signed.

To address these issues Shamir and Tauman in [27] offered an alternative
construction which combines regular signatures with chameleon hashing [18]. A
chameleon hash function is defined by a public key pk and a secret trapdoor tk.
The function Cpk(·, ·) takes two arguments a message m and a random string
r. The function is collision-resistant, unless one knows the trapdoor tk. But
knowledge of tk allows to find arbitrary collisions, i.e. given c = Cpk(m, r) and
an arbitrary different message m′, the holder of the trapdoor can find r′ such
that c = Cpk(m′, r′). For many chameleon hash functions, this collision-finding
procedure is very efficient, requiring only a single modular multiplication. The
Shamir-Tauman idea is to construct off-line/on-line signatures as follows. The
signer’s public key is VK, like before, and pk. The off-line part would consists
of computing c = Cpk(a, r′) for some arbitrary a, r′ and then computes S the
signature of c using SK. On input the actual message m the signer (who knows
the trapdoor tk as part of the signing key) computes r such that c = Cpk(m, r)
and outputs (S, r). The verifier re-computes c as Cpk(m, r) and verifies S on it.
As we will see later in the examples of chameleon hashing, the length of r grows
only linearly in the length of the message m, so the Shamir-Tauman approach
provides shorter signatures.

1.1 Our Contributions

This work was motivated by two basic questions:

1. Is the Shamir-Tauman approach conceptually different from the Even et
al. approach, or are they really two different instantiations of the same
paradigm?

2. In practical implementations, for today’s security levels, which approach is
preferable, in terms of speed, memory and ease of implementation?



This paper presents some theoretical and experimental results about off-
line/on-line digital signatures which are aimed at answering the above questions.

We first show that conceptually the Shamir-Tauman construction is not dif-
ferent from the Even et al. one. Indeed we present a unifying paradigm which
encompasses both the Shamir-Tauman and the Even et al. approaches. We do
this by showing that a chameleon hash function can also be seen as a one-time
signature with a very weak security property. As already observed in [12], this
weak property is sufficient to prove the security of the Even et al. approach.
In the process of exploring the relationship between one-time signatures and
chameleon hashing, we discovered that fully secure one-time signatures can be
obtained from a special type of chameleon hashing that we call two-trapdoor
chameleon hashing.

Finally we ran experimental tests using OpenSSL libraries to test the differ-
ence between the two approaches. In our implementation we make extensive use
of the observation that off-line/on-line digital signatures do not require collision-
resistant hash functions to compress the message, but can be safely implemented
with universal one-way hashing in both the off-line and the on-line step. The
main application of this observation is that both the steps can be applied to
shorter digests. This has particular relevance if block-ciphers or hash functions
based one-time signatures are used since these are very sensitive to the length
of the message. Surprisingly, we show that (mostly due to the above observation
about hashing), the two approaches are comparable in efficiency and signature
length.

Related work. As we pointed out, Even et al. introduced the notion of off-
line/on-line signatures in [12] and constructed them combining regular signatures
with efficient one-time signatures. However the length of the signatures is an issue
in this approach. Shorter signatures can be obtained by using chameleon hashing
[18] combined with regular signatures as pointed out by Shamir and Tauman [27].
Off-line/On-Line digital signatures can also be obtained by applying the Fiat-
Shamir heuristic to a variety of identification protocols known as Σ-protocols.
Example of such schemes are [13, 30, 11, 28]. However such schemes are proved
secure in the random oracle model [3, 23]; our paper is focused on schemes which
are secure in the standard model.

2 Preliminaries

In the following, with N we denote the set of integers and with R the set of real
numbers. We denote the security parameter with `. A function f : N → R is
said to be negligible if for any c > 0, there exists an index `c ∈ N such that
f(`) < `−c for all ` > `c.

2.1 Hash functions

For lack of space the definitions of Collision resistant hash functions and Target
collision resistant hash functions, are postponed to Appendix D



Target Division Intractable (TDI) hash functions: Consider a family H =
{htdi(k, ·)}k (we are making explicit the fact that an element of the family is
parametrized by a key k) with poly(`)-bit input and ` bit output. We say that
H is target division intractable if it is hard for the attacker to win the following
game:

1. the attacker chooses polynomially many inputs x1, x2, . . .;
2. a random key k is chosen;
3. the attacker outputs y 6= xi such that htdi(k, y) divides the product of the
htdi(k, xi)’s.

This notion was introduced in a stronger variant3 by Gennaro et al. [14].
They conjectured that a random oracle with approximately 600 bits of output
would be a safe choice for a DI function. Later, Coron and Naccache [7] described
an attack that disproves such a conjecture and forces one to use functions with
much longer outputs (see [7] for details).

Recently, Kurosawa and Schmidt-Samoa [19] introduced the notion of weak
division intractability (wDI). Informally, wDI formalizes a weaker (i.e. with re-
spect to the notions discussed above) notion of division intractability. Here, the
adversary A should be unable to find y 6= x1, . . . xn, such that htdi(k, y) divides
the product of the htdi(k, xi)’s, when the xi’s are chosen at random (i.e. and
thus are not of A’s choice). Kurosawa and Schmidt-Samoa showed that this
property is sufficient to prove the random-message security (see Section 2.3) of
the GHR signature scheme. Very informally, this is because the attack of Coron
and Naccache crucially relies on the attacker choosing the xi’s.

Notice that, by a similar reasoning, the same attack cannot be applied if one
uses a TDI function. This is because, in such a case, the adversary does not
know the key (of the hash function) when choosing the xi’s. This is why in our
constructions we only require the GHR scheme to be obliviously secure and the
underlying hash function to be target division intractable.

2.2 Chameleon Hashing

Definition 1. A chameleon hash function (also known as trapdoor commitment
scheme) is a triplet of polynomial-time algorithms:

CKG(1`): a probabilistic algorithm which, on input a security parameter 1`, out-
puts a pair of matching public/private keys (pk, tk);

Cpk(m, r): the evaluation algorithm which, on input the public key pk, a message
m and a random nonce r, outputs a hashed value;

Coll(tk,m,m′, r): the collision finding algorithm which, on input the private
trapdoor key tk, two messages m, m′ and a nonce r, outputs a nonce r′

such that Cpk(m, r) = Cpk(m′, r′).

3 In such a variant, called division intractability (DI), the adversary is allowed to
choose the xi’s after having seen the hash function



As required in [18], the public key defines a particular hash function which,
however, takes a random input additionally to the message. The security prop-
erties of this function are as follows:

Collision Resistance Without knowledge of the associated trapdoor, this func-
tion is collision resistant, i.e. it is infeasible to find two different pairs
(m, r), (m′, r′) such that Cpk(m, r) = Cpk(m′, r′);

Distribution of Collisions For every m,m′, and a random r, the distribution
of r′ = Coll(tk,m,m′, r) is uniform, even when given pk, c = Cpk(m, r), m
andm′. This implies that the chameleon hashing function is also a information-
theoretically hiding commitment.

Two efficient constructions of chameleon hash function follow: the first is due
to Boyar et al. [4] and its security is based on the Discrete Log problem difficulty;
the second [8, 10] relies on the RSA assumption. Both these constructions are
given in Appendix E.

2.3 Signature schemes

We recall the definition of secure signature scheme from [15].

Definition 2. A signature scheme is a triplet (KG,Sign,Ver) of PPT algorithms:

– the key generation algorithm KG(1`) outputs a pair (vk, sk) of matching pub-
lic/private keys;

– the signing algorithm Sign(sk,m) takes as input the private key and a mes-
sage m and produces a signature σ;

– the verification algorithm Ver(vk,m, σ) takes as input the public key, a mes-
sage and an alleged signature σ and outputs a single bit.

For every possible output (vk, sk) of KG, and every m, it is required that
Ver(vk,m, Sign(sk,m)) = 1. We say that a signature scheme is secure against
adaptive chosen message attack (or in short “secure”) if a forger after asking for
the signature on several adaptively chosen messages will not be able to produce
a valid signature on a message he had not previously requested.

Definition 3. (KG,Sign,Ver) is a secure signature scheme if for every efficient
forger F , the following

Pr


(vk, sk)← KG(1`) ;
for i = 1 to k

Mi ← F(vk,M1, σ1, . . . ,Mi−1, σi−1) ;
σi ← Sign(sk,Mi) ;

(M,σ)← F(vk,M1, σ1, . . . ,Mk, σk) ;
Ver(vk,M, σ) = 1 and M 6= Mi


is negligible in `.



We say that a signature scheme is obliviously secure if in the game above
the adversary chooses the messages Mi before seeing the public key. Also we
say that a signature scheme is random-message secure if the above holds for
messages Mi chosen randomly in the message space, rather than adaptively and
adversarially chosen. Similar security definitions apply to one-time signatures if
the above hold for k = 1.

Examples of one-time signatures Lamport et al. [20] proposed a method
to construct a one-time signature scheme from one-way functions. Later Even,
Goldreich and Micali [12] suggested an improved method to shorten the length
of keys and signatures. In the follow we recall their ideas and also describe a
technique due to Jakobsson [17] to speedup the signature phase.

– Lamport’s scheme: let M be the m-bit message to sign and f : {0, 1}` →
{0, 1}` be a one-way function. We choose 2m `-bit strings x0

1, x
1
1, . . . , x

0
m, x

1
m

at random as the signing key. The verification key is computed applying f
to each x0

i , x
1
i for i = 1, . . . ,m: f(x0

1), f(x1
1), . . . , f(x0

m), f(x1
m).

To sign a message M = µ1, · · · , µm the signer reveals xµ1
1 , . . . , xµm

m . Given
a message M and its signature s = s1, · · · , sm, the verifier applies f to the
values s1, · · · , sm from the signature and checks if they are equal to the
corresponding images in the verification key.
This simple scheme is proved to be secure if f is a one-way function; it is
really fast but has the drawback of quite large keys and signatures.

– Shortening length of keys and signatures (Even et al.’s): let M be
the m-bit message, we partition the message in blocks of t bits, where t|m.
Let f be a one-way function as before4. We choose at random m

t + 1 `-bit
strings x0, x1, . . . , xm/t as the signing key. The corresponding verification key
is:

y0 = f (2t−1)m/t(x0); y1 = f2t−1(x1), . . . , ym/t = f2t−1(xm/t)

To sign a message M = µ1, . . . , µm/t, whose t-bit blocks µi are interpreted
as integers, the signer outputs:

s0 = f
Pm/t

i=1 µi(x0), s1 = f2t−1−µ1(x1), . . . , sm/t = f2t−1−µm/t(xm/t)

Given a message M = µ1, . . . , µm/t and a signature s0, s1, . . . , sm/t the ver-
ifier applies f to each signature component the proper times and compares
the resulting values with the verification key elements. Namely, it checks:

y0
?= f (2t−1)m/t−

Pm/t
i=1 µi(s0); y1

?= fµ1(s1), . . . , ym/t
?= fµm/t(sm/t)

It is interesting to note the trade-off: a small t makes the signature compu-
tation more efficient (because the hash chains are shorter), but makes the
signature longer (because the number of blocks m/t is bigger).

4 As explained in Appendix A, the proof of security requires a stronger assumption
than the inverting infeasibility: the quasi-inverting assumption has to hold on f . Also
in Appendix A we make a concrete security analysis of this assumption compared
to the assumption of basic one-wayness.



– Speedup the signature step (Jakobsson’s): in the previous scheme the
length of the hash chains is exponential in the size of the block; this makes
the signature and verification steps computationally expensive for big blocks.
The optimization for one-way hash chains traversal proposed by Jakobs-
son [17] can be applied here: the idea is to store not only the first and last
value of the chains, but also some intermediate elements (called pebbles) that
permit in the signature procedure to speedup the traversal originating the
iterative computation from the nearer pebble in the chain. In [17] it is stated
that keeping O(log n) number of pebbles, where n is the chain length, the
traversal time becomes O(log n); in our case, the storage and the running
time become O(t), where t is the size of the block.

Examples of obliviously secure signatures In this section we recall two
signature schemes: one is due to Gennaro et al. [14] and the other to Cramer
and Shoup [10]. Their security is based on the Strong RSA Assumption, and
they are the most efficient signature schemes in the literature whose security
can be proved without using the random oracle model.

We present simplified versions of these schemes which can be proved to be
obliviously secure since that’s all we need later.

– Simplified GHR Signature: This scheme uses a target division-intractable
hash function htdi(·, ·).
• Key generation: let N = pq be an RSA modulus where p, q are safe

primes of identical sizes; select a random element s in Z∗N and a key k
for the TDI hash function htdi(·, ·); the public key is (N, s, k) and the
secret key is φ(N) = (p− 1)(q − 1).

• Signature algorithm: given a messagem to sign, compute e = htdi(k,m)
and d = e−1 mod φ(N) and outputs the signature σ = sd mod N .

• Verification algorithm: on input the public key (N, s, k) and the mes-
sage/signature pair m,σ, compute the value e = htdi(k,m) and check if
σe = s mod N .

– Simplified CS Signature:
• Key generation: generate an RSA modulus N = pq as in GHR (safe

primes), select two random elements s, t in Z∗N and draw a random key
k for a TCR hash function htcr(·, ·); the public key is (N, s, t, k) and the
secret key is φ(N).

• Signature algorithm: given an arbitrary long message m to sign, gen-
erate a random 161-bit prime e and compute d = e−1 mod φ(N) and
σ = (sth

tcr(k,m))d mod N . The signature is (e, σ).
• Verification algorithm: on input the public key (N, s, t, k) and the

message/signature pair m, (e, σ), check if σe = sth
tcr(k,m) mod N .

Cramer and Shoup in [10] suggest an efficient method for the generation of
small primes of 161 bits. This operation is critical for the performance of the
scheme since a fresh 161 bit prime number is necessary to sign a message.



2.4 Off-line/On-line digital signatures

In this section we recall the Even et al. and Shamir-Tauman approaches to
construct off-line/on-line signatures.

Using one-time signatures The idea is to combine a random-message secure
signature scheme with a one-time signature. In the off-line step a pair of keys
for a one-time signature is generated and the public key of this scheme is signed
using the long-term signing key. During the on-line phase, given the message to
sign, its signature is computed using the one-time secret key.

We call this scheme the EGM scheme. A more detailed description follows: let
(KG,Sign,Ver) be a signature scheme, (KGot,Signot,Verot) a one-time signature
scheme. The combined off-line/on-line signature works as follows:

– Key generation: this step coincides with the key generation of the ordinary
scheme; run KG(1`) to obtain a pair of long-term keys (VK, SK); the public
component VK is announced, while SK is kept secret.

– Off-line Signature: in this phase a fresh pair of keys (vk, sk) for a one-time
signature is generated using KGot(1`). The verification key vk is signed with
the long-term signing key SK as π = Sign(SK, vk). The token (vk, sk, π) is
kept as part of the signer’s state.

– On-line Signature: given the message m to sign, a precomputed token
(vk, sk, π) is retrieved; the message m is signed using the one-time scheme
as σ = Signot(sk,m) and the complete signature is the triple (vk, π, σ).

– Verification: given a message m and its purported signature (vk, π, σ), the
master verification key VK is used as follows. First, the algorithm Ver is
used to check that π is indeed a valid signature of vk with respect of the
long-term verification key VK. Next, the tag σ is verified to be a (one-time)
signature of m using vk; namely, the verification consists in evaluating the
following predicate:

Ver(VK, vk, π) ∧ Verot(vk,m, σ)

The following Theorem appears in [12].

Theorem 1 (EGM [12]). If (KG,Sign,Ver) is a “regular” signature scheme and
(KGot,Signot,Verot) is a one-time signature scheme and both the schemes are
secure (as in Definition 3) then the EGM scheme described above is secure in
the standard sense.

Using Chameleon hash functions This construction is also known as the
“hash-sign-switch” paradigm: in the off-line phase, the signer hashes an arbitrary
message m′ with a chameleon hash. It then signs the results. When, during the
on-line phase, he is given the message m the signer uses its knowledge of the
chameleon hash trapdoor to find a second preimage and “switches” m with the
arbitrary m′ used in the off-line phase.

We call this the ST scheme. Let (KG,Sign,Ver) be a signature scheme and
(CKG,C,Coll) a chameleon hash function family. Given a security parameter `,
an off-line/on-line signature scheme can be constructed as follows:



– Key generation: a pair of keys (VK, SK) is generated using the signature
key generation algorithm KG(1`); furthermore, a specific chameleon hash
function is selected in the family using the trapdoor key generation algorithm
as (pk, tk) = CKG(1`). The signing key is (SK, tk) and the verification key
is (VK, pk).

– Off-line Signature: an arbitrary message m′ is chosen together with a
random string r′. The hash value δ = Cpk(m′, r′) is computed and signed
with SK, to compute σ = Sign(SK, δ); the token (m′, r′, σ) is kept in the
signer’s internal state.

– On-line Signature: given the message m to sign, a precomputed token
(m′, r′, σ) is retrieved; use Coll with the trapdoor key tk to find r such that
Cpk(m, r) = δ = Cpk(m′, r′); the signature given in output is (r, σ).

– Verification: given a message m and a signature (r, σ), first compute δ =
Cpk(m, r) and then verify the signature σ on it using Ver(VK,Cpk(m, r)).

Theorem 2 (ST [27]). If (CKG,C,Coll) is a chameleon hash function and
(KG,Sign,Ver) is an obliviously secure signature scheme then the ST scheme
described above is a secure signature scheme.

3 A unifying paradigm

In this section we show that the Even, Goldreich, Micali [12] construction and
the Shamir, Tauman [27] solution can be seen as two special cases of the same
methodology. This would be immediate if we could show that chameleon hashing
is a form of secure one-time signatures. Unfortunately that is not true in general,
though in the next subsection, we describe a sufficient condition on chameleon
hashing to be a secure one-time signature. Nevertheless, for a general statement,
we must follow a different approach.

Our starting point, is the observation (originally made in [12]) that the
Even, Goldreich, Micali construction remains secure even if the underlying one-
time and regular signature schemes are obliviously secure. Next, we show that
chameleon hash functions are a form of oblivious one-time signatures. This shows
an unifying paradigm that encompasses both the Even et al. and the Shamir-
Tauman approach.

Informally an oblivious one-time signature is guaranteed to be secure only
against an adversary which chooses the (one) message for which she is allowed
to see a valid signature, before seeing the public key. Notice that this level of
security is indeed sufficient for the EGM approach since, in the off-line/on-line
EGM signature, the keys of the one-time signatures are chosen independently
from the message being signed (i.e. the adversary does not see the keys of the
one-time signature when she submits a message to be signed).

Definition 4. (KG,Sign,Ver) is an obliviously secure one-time signature if for
every efficient forger F , the following probability is negligible in `.

Pr

 (M, state)← F ; (vk, sk)← KG(1`); σ ← Sign(sk,M) ;
(M ′, σ′)← F(vk,M, σ, state) :
Ver(vk,M ′, σ′) = 1 and M ′ 6= M





We state the following

Theorem 3 (EGM [12]). If (KG,Sign,Ver) is an obliviously secure signature
scheme and (KGot,Signot,Verot) is an obliviously secure one-time signature scheme
then the EGM scheme described above is a secure signature scheme.

Now we show that an oblivious one-time signature scheme can be implemented
using a chameleon hash function. The construction Cham-Sig is as follows.

Key Generation. On input a security parameter `, run CKG(1`). Then it
chooses a message α and a nonce r and computes c = Cpk(α, r). The public key
is (pk, c), the signing key is (tk, α, r).

Signature Algorithm. On input a message m the signer uses his knowledge
of the trapdoor to compute a nonce s such that, c = Cpk(m, s). The signature is
then (m, s).

Verification. On input a purported signature (m, s), the verifier checks whether
c = Cpk(m, s). If this is the case the signature is accepted as valid, otherwise it
is rejected.

The proof of the following theorem appears in Appendix C.1.

Theorem 4. The scheme presented above is an obliviously secure one-time sig-
nature scheme assuming that the underlying primitive is a chameleon hash func-
tion.

3.1 Double trapdoor Chameleon hash function

In the previous section we showed that a chameleon hash function is an oblivi-
ously secure one-time signature. It is not hard to see why it fails to be a (fully)
secure one-time signature. In the oblivious case, the adversary commits to the
message she wants to be signed before seeing the public key: this allows us to
“prepare” the public key as a commitment to that specific message. In the adap-
tive case, when we prepare the public key we do not know the message, so when
the adversary asks us for a signature we do not know how to produce it.

In order to get a fully adaptively secure one-time signature from chameleon
hashing, a possible way is to compose two different hash functions (i.e. apply one
function over the output of the other). Conceptually this is not surprising as it
corresponds to a chain of length two in the [15] signature scheme (in that scheme
a chain of length two, instead of a full binary tree, gives a one-time signature).

In some cases we can do better. If a chameleon hashing admits the “double
trapdoor” property (described below) then we can obtain the same effect as
composing two hash functions, but more efficiently.

A double trapdoor chameleon hash function scheme generalizes the notion of
chameleon hash by allowing the existence of two independent trapdoors. Know-
ing either of the two trapdoors, one can can easily find collisions. More formally:

Definition 5. Let ` be a security parameter. A double trapdoor chameleon hash
function is composed of the following, polynomial-time, algorithms:



CKG(1`): a probabilistic algorithm which, on input the security parameter 1`,
outputs a triplet of public/private keys (pk, tk0, tk1)

TCKG(1`, i): a probabilistic algorithm which, on input the security parameter 1`

and a bit i outputs a pair of public/private keys (pk, tk).
Cpk(m, r): the evaluation algorithm which, on input the public key pk, a message

m ∈M and a random nonce r ∈ R, outputs a hashed value;
Coll(tki,m,m′, r): the collision finding algorithm which, on input one of the two

private trapdoor keys tki, two messages m, m′ and a nonce r, outputs a
nonce r′ such that Cpk(m, r) = Cpk(m′, r′).

We make the following security requirements

Distribution of Keys Let CKG(1`, i) the algorithm that executes CKG(1`) and
restricts its output to (pk, tki). We require that the distribution of the output
of TCKG(1`, i) is identical to the distribution of the output of CKG(1`, i).

Collision Resistance Let (pk, tk0, tk1) = CKG(1`).
1. For every i = 0, 1, given pk and tki it is infeasible to find tki⊕1.
2. Moreover there exists an, efficient, algorithm A that on input the public

key pk and a collision m, r,m′, r′ finds at least one of the trapdoors tki.
As a consequence, it is infeasible to find collisions without at least one of the
trapdoors tki.

Distribution of Collisions For every m,m′, and a random r, and for every
i = 0, 1, the distribution of r′ = Coll(tki,m,m′, r) is uniform, even when
given pk, c = Cpk(m, r), m and m′. As in the case of the ’regular’ chameleon
hashing, this implies that the function is an information-theoretically hiding
commitment. Moreover it implies that the distributions of the openings are
the same no matter what trapdoor one uses.

Double trapdoor chameleon hashing leads to a very simple construction of
a fully secure one-time signature scheme (rather than just an obliviously secure
signature scheme as it is the case when using standard chameleon hash func-
tions). The construction given a two-trapdoor chameleon hash (CKG,C,Coll) is
as follows.

Key Generation. On input a security parameter `, run CKG(1`) = (pk, tk0, tk1).
Then it chooses a message α and a nonce r and computes c = Cpk(α, r). The
public key is (pk, c), the signing key is (tk0, tk1, α, r).

Signature Algorithm. On input a message m the signer uses his knowledge
of either trapdoor to compute a nonce s such that, c = Cpk(m, s). The signature
is then (m, s).

Verification. On input a purported signature (m, s), the verifier checks whether
c = Cpk(m, s). If this is the case the signature is accepted as valid, otherwise it
is rejected.

Theorem 5. If (CKG,C,Coll) is a two-trapdoor chameleon hash function then
the scheme presented above is a secure one-time signature scheme.



The proof appears in Appendix C.2.

Construction. The notion of double trapdoor commitment scheme was pro-
posed (even though not explicitly defined) in [6]. There they present a scheme
based on the discrete logarithm problem and they show how to use such a con-
struction to build threshold on-line off-line digital signature schemes. In Ap-
pendix F we briefly recall the double trapdoor commitment scheme given in [6]

4 Experimental results

As we said in the introduction, this work was motivated by two basic questions
about the relationship between the EGM and the Shamir-Tauman approach to
build off-line/on-line signatures. In the previous section we showed that, at least
conceptually, the Shamir-Tauman approach is really an instantiation of the EGM
paradigm. In this section we set out to discuss a practical comparison between
the two approaches in terms of their efficiency. To achieve that, an extensive work
of implementation was carried out. We implemented all the schemes presented
in the previous sections, in order to directly measure their real efficiency. To get
objective values, all the implementations share the same level of optimization
and all the tests were iterated hundreds of times on a reference hardware: an
Intel Pentium 4 CPU running at 2.80 GHz. We implemented the algorithms in C
using OpenSSL[29] as the underlying library for large number manipulations5.

4.1 Implementation details

The different types of hash functions (see Section 2.1) required in our construc-
tions were implemented as follows:

– FCR hashing: we use SHA-1 [9] with its full 160-bit output;
– TCR hashing: it is implemented using SHA-1 as follows[16]: given a message
x and the key k, the function is computed as htcr(k, x) = Trunc`(SHA-1(x⊕
k′)), where k′ is the concatenation of copies of k until k′ and x have the same
length. Trunc`(·) is a function that outputs the first ` bits of its input.

– TDI hashing: as practical construction we use the one suggested in [14]
with SHA-1 as the underling tool, but with an additional randomizing key.
Given a message x and a key k:

htdi(k, x) = Setmsb(Setlsb(SHA-1(x ◦ 1⊕ k′) ◦ · · · ◦ SHA-1(x ◦ 4⊕ k′)))

where ◦ is the concatenation operator, k′ is the concatenation of copies of
k until k′ and x have the same length and Setmsb(·), Setlsb(·) are functions
that force the most-significant-bit (resp. least-significant-bit) to be 1; this
function takes arbitrarily long inputs and outputs of 640-bit integers.

5 The sources of the tests are available upon request to the authors.



One-Time Signatures. In our tests we implemented the one-time signature
proposed by Even et al. with the option to apply Jakobsson’s speedup (see
Section 2.3). The one-way function used in the implementation is:
f(x) = Trunc`(SHA-1(x)) with different values for the security parameter `.

The public key in this scheme is composed of m/t strings y0, y1, . . . , ym/t,
but it can also be replaced with its hash value y = hfcr(y0, y1, . . . , ym/t), which
is what we do in our implementation, in order to keep keys shorter (the price to
pay is an extra computation of hfcr at verification time).

4.2 Using target-collision resistant hash

Using TCR hashing in the on-line step. When signing messages one usually
hashes them down with a FCR function to shorten them. It is well known that
one can uses a TCR function provided that the key of the hash function is signed
together with the message digest and sent as part of the signature. One of the
advantages of using TCR functions is that the message digest may be shorter,
but this advantage is usually off-set by the need to sign the key as well.

However in the case of off-line/on-line signatures, the advantage of using
TCR functions can be substantial. Indeed one can ’prepare in advance’ the key
k for the TCR function to be used in the on-line step, and sign it during the
off-line step with the “regular” signature scheme.

In the EGM construction, this results in a substantial efficiency gain, since
the one-way functions based one-time signatures are very sensitive to the length
of the message being signed. Indeed the size of the signature grows quadratically
in the length. Since the key k of the TCR function is signed in the off-line step,
the one-time signature is only applied to the digest, resulting in a substantially
shorter signature.

Similarly in the Shamir-Tauman approach, using a TCR function to hash the
message in the online case can improve the efficiency. For example if we use the
RSA-based chameleon hash in Appendix E it will be possible to use a shorter
public exponent e.

Using TCR hash in the off-line step. As we pointed in the previous sec-
tion, the quantities signed in the off-line step are not under the control of the
adversary, and they are actually random quantities (the verification key of the
one-time signature or of the chameleon hashing, and the key of the TCR func-
tion). For this reason it is also possible to use a TCR function to compress them,
rather than a FCR one. In this case the key k is chosen once and for all and
made part of the public key.

4.3 Test settings

As we said above we performed implementation of all the schemes described
above. With OTS we denote the “one-time signature” based on one-way func-
tions described in Section 2.3.

GHR-OTS setting: This implementation uses the GHR scheme for the off-line
step, and the OTS scheme for the on-line case. As pointed above we use TCR



hashing to compress the message, the key is signed in the off-line part. The
GHR-OTS setting can be configured with various parameters. In all our exper-
iments we set the size of the RSA modulus to 1024. We varied the other pa-
rameters as you can see in the Table. These parameters are: ots l = 80, 96, 112
the size of the TCR output, i.e. the size of the digest being signed in the OTS
scheme; ots t = 4, 8, 10, 12, 16 the size of the blocks in the OTS scheme; and
ots p = 1, 5, 8, 10, 12, 16 the number of memorized pebbles in Jakobsson’s opti-
mization (1 means that it is disabled).

GHR-DL setting: This implementation uses the GHR scheme for the off-line step,
and the discrete-log based chameleon hashing for the on-line case. Here we use
FCR hashing to compress the message in the on-line step. We implemented the
group G as the subgroup of order q in Z∗p where p, q are primes such that q|(p−1).
The parameters of the GHR-DL setting are: the size of the GHR modulus N and
the sizes of the primes p and q. We only ran experiments with |N | = |p| = 1024
and |q| = 160.

GHR-RSA setting: This implementation uses the GHR scheme for the off-line
step, and the RSA based chameleon hashing for the on-line case. Here we use
FCR hashing to compress the message in the on-line step. The parameters of
the GHR-RSA setting are: the size of the GHR modulus N (which can be used
also as the modulus for the chameleon hash) and the size of the exponent e for
the chameleon hash. We only ran experiments with |N | = 1024 and |e| = 160.

GHR-DL2 setting: This the same as GHR-DL but use TCR hashing to compress
the message in the on-line step. The key of the TCR hash is signed in the off-line
step. This results in the shortening of some of the exponents used to compute
the chameleon hash. The parameters are the same of GHR-DL with an extra one:
tcr bits = 80, 96 the length of the output of the TCR hash function.

GHR-RSA2 setting: the same as GHR-RSA but using TCR hashing to compress
the message in the on-line step. The key of the TCR hash is signed in the off-line
step. This results in the shortening of the public exponent e used to compute
the chameleon hash. In this case the parameter tcr bits = 80, 96 denotes the
length of the output of the TCR hash function and of the exponent e (actually
|e| = tcr bits + 1).

CS-OTS, CS-DL, CS-RSA, CS-DL2 and CS-RSA2 settings: they are analogous to
the previous settings, but here we use the CS signature scheme instead of the
GHR one. As before the CS signature modulus was always chosen as a 1024-bit
one. The other parameters are the same, as in the above cases.

Table 4.3 reports the results of our experiments. The second column reports
which scheme was used and which parameters. The next columns are the times
in milliseconds elapsed for: key generation, off-line phase, on-line phase and
verification. The last two columns report the size in bits of the temporary token
that must be secretly stored between the off-line and the on-line steps, and the
size of the final signature.



4.4 Analysis of the results

In this section we summarize what we learned from our experimental results.

EGM construction vs. ST construction. The use of TCR hashing in the
EGM settings, results in experimental results which are comparable to the ST
measurements. For example if we focus on the time to perform the on-line step
(arguably the most important measure in off-line/on-line signatures), we see
that for the ST construction this is minimized with a time of about 0.03 ms
by using the Discrete Log based chameleon hashing (no matter if the GHR
and CS signature is used in the off-line step, of course) Nevertheless the setting
GHR-OTS reaches a comparable on-line signing time of 0.47 ms when istantiated
with similar security levels (row 1). The drawback is a longer signature, though
the difference is not huge: 2944 bits versus the 1184 bits of GHR-DL. It is possible
to shrink the EGM signature size to 2144 using bigger blocks and applying
Jakobsson’s technique. The on-line signature time continues to be competitive
(1.27 ms) at the cost of a bigger temporary storage (8304 bits). It is important
to note that the hash chain traversals in the verification step do not enjoy the
benefit of the Jakobsson’s technique as the pebbles must be kept secret.

GHR vs. CS. The GHR signature scheme outperforms the CS signature scheme
in almost all parameters: off-line and on-line signature time, and signature size.
The CS scheme is faster only in verification time, as to be expected since the
GHR must use a longer public exponent, because of the division-intractability
assumptions.

Chameleon hashing: DL-based vs. RSA-based. The time required for the
hash evaluation step is comparable in both the schemes but the DL-based one has
a notable advantage in the collision finding step. This operation is fundamental
in the off-line/on-line signature construction, so it is the optimal choice for the
ST construction.

Use of TCR hashing. As we pointed out above the use of TCR hashing
has a dramatic impact on the efficiency of the OTS schemes. The experiments
also point out that TCR hashing improves also the Shamir-Tauman approach,
as it reduces the size of some of the exponents used in the exponentiations. A
more pronounced improvement is obtained when using the RSA-based chameleon
hashing: as in this construction the use of TCR hashing reduces the size of two
exponents, rather than one as in the Discrete Log based one.

5 Conclusions

This paper presents some theoretical results about off-line/on-line digital sig-
natures. We showed that the Shamir-Tauman approach of composing a regular
signature with a chameleon hashing is conceptually just a different instantiation
of the generic EGM paradigm that composes regular signatures with one-time
signatures. We did this by proving that the EGM paradigm requires weaker se-
curity properties from its components and then showing that such properties



are satisfied by chameleon hash functions. We also showed that some type of
chameleon hash functions can be used as full-fledged one-time signatures. We
performed extensive implementation results to see what approach is preferable.
Surprisingly we found that for appropriate choices of security parameters the
ST and EGM approaches are comparable. Our experiments also showed that
the Gennaro-Halevi-Rabin signature scheme is preferable to the Cramer-Shoup
one on all respects except verification time.

Acknowledgments We thank the anonymous reviewers for their useful com-
ments.
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A On one-time signatures

In Section 2.3 we presented two one-time signature schemes: Lamport’s and
Even et al.’s. The former is faster, but produces long signatures and keys. The
latter allows for an efficiency trade-off between the signature/key sizes and time
required to generate and to verify a signature tag.

Security. Lamport’s scheme is proved secure under the assumption that one
way functions exist. Even et al. solution relies on a seemingly stronger assump-
tion:



Definition 6 (Quasi-Inverting). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function. Given an image, y, the task of quasi-inverting f on
y is to find an x and an i = poly(|y|) so that f i+1(x) = f i(y). (For i = 0, the
standard notion of inverting is regained.)

Concrete security analysis. Here we focus on the security of the two one-
time signature schemes presented in Section 2.3. In particular we analyze the
efficiency (in terms of signature/key length) of Even et al.’s scheme with respect
to Lamport’s one, under the additional requirement that the two schemes should
achieve the same security level.

Let f : {0, 1}` → {0, 1}` be a one-way function. In both schemes we assume
to sign messages of length m. In the scheme of Even et al., t represents the block
length.

Let A be an adversary that breaks Lamport’s one-time signature scheme
with probability ε. It is possible to prove that this leads to an adversary B that
inverts f with probability ε

2m .
Similarly, if A′ is an adversary that breaks Even et al. scheme with probability
ε′, this leads to an adversary B′ that quasi-inverts f with probability ε′

(m/t)2t+1

(see [12], for details).
In what follows, we restrict to the case where f is a one way permutation (so

that quasi-inverting f is equivalent to inverting f). We assume that no adver-
sary can invert f with probability better than 1/2`. For the case of Lamport’s
scheme, this leads to ε

2m = 1
2` which means that one cannot forge signatures

with probability better than ε = 2m
2` . Similarly for Even et al.’s scheme we

have that ε′

(m/t)2t+1 = 1
2`′ , implies a security for the signature scheme which is

ε′ = m2t+1−`′

t . Thus, in order for the two schemes to achieve the same security

level, it has to be the case that ε′ = ε, which means 2m
2` = m2t+1−`′

t .
Thus, to achieve the same security level, for the two schemes, one has to

consider a larger security parameter for the Even et al. scheme.

`′ = `+ t− log(t) (1)

Signature length. In Lamport’s scheme signatures have length d = m`. In
Even et al.’s, on the other hand, the signature length is d′ = ((m/t)+1)`′. From
Equation (1) we get:

d′ =
m`

t
+m+ `+ t− (

m

t
+ 1)log(t) (2)

Now, we want to establish for which choice of t we have d′ < d. That is, for
which choice of t Even et al. signatures are shorter than Lamport’s ones.
From m`

t + m + ` + t − (mt + 1)log(t) < m` one easily derives that if m, ` > 2
then t > 1 is the required condition.

Experimental results. The relation among the variables involved in Equa-
tion (2) is analyzed through the tabulation of realistic values. We fix the security



parameter for the Lamport’s scheme ` = 80 and we assume to deal with messages
of m = 2` bits length. For different values of t we determine the corresponding
values for the Even et al.’s parameters `′, d′ using the above relations. All these
values are reported in Table A; the signature length gain (d−d′) obtained using
the EGM scheme instead of the Lamport’s one is emphasized too (a negative
value means that the use of the EGM construction is self-defeating).

We observe that the EGM solution is a winning solution for each real cases:
the necessary augment of the security parameter `′ is minimal.

B Hard problems

B.1 The Discrete logarithm problem

Let G be an algorithm that takes in input a security parameter ` and outputs
an integer q (such that |q| = k) and a generator g of a cyclic group G of order
q. Let A be a an algorithm that outputs an integer in Zq. Let we consider the
following experiment:

Experiment ExpdlG (A, `)
(q, g)← G(1`)

x
$← Zq;X ← gx

x̄← A(X)
If gx̄ = X then return 1 else return 0.

The dl-advantage of A is defined as

AdvdlG,A(`) = Pr[ExpdlG (A, `) = 1]

Definition 7. The discrete logarithm problem is said to be hard in G if the
dl-advantage of any polynomial time adversary is negligible in `.

B.2 The RSA and Strong RSA Problems

Let N be the product of two primes, N = pq. With φ(N) we denote the Euler
function of N , i.e. φ(N) = (p− 1)(q− 1). With Z∗N we denote the set of integers
between 0 and N − 1 and relatively prime to N . Let e be an integer relatively
prime to φ(N). The RSA Assumption [25] states that it infeasible to compute
e-roots in Z∗N . I.e. given a random element s ∈R Z∗N it is hard to find x such that
xe = s mod N . The Strong RSA Assumption (introduced in [1]) states that given
a random element s in Z∗N it is hard to find x, e 6= 1 such that xe = s mod N .
The assumption differs from the traditional RSA assumption in that we allow the
adversary to freely choose the exponent e for which she will be able to compute
e-roots.



C Proofs

C.1 Proof of theorem 4

For the sake of contradiction assume the statement does not hold. This means
that there exists an adversary F that breaks the oblivious security of the pro-
posed one time signature. We show how to build an efficient B that, uses F to
find collisions in the chameleon hash function. B goes as follows. On input the
public key material pk, of a chameleon hash function, it waits F to make its
unique signature request. When F asks for a message m to be signed, B chooses
a random nonce r and computes c = Cpk(m, r). Next, it publishes the public
key (pk, c) for the oblivious one time signature scheme F is supposed to attack,
and hands F the signature (m, r) for m. If F manages to produce a valid forgery
(m′, s) for a message m 6= m′, B outputs (m,m′, r, s) as the required collision.

C.2 Proof of theorem 5

We prove the theorem by reductio ad absurdum. We assume that the proposed
construction is not a secure one time signature scheme. This means that there
exists an efficient forger F that breaks the (one time) existential unforgeability
of the signature scheme and we show how to build an efficient algorithm B,
out of F , that breaks the collision resistance of the underlying double trapdoor
chameleon hash function (DTCH, for short). B works as follows. On input a secu-
rity parameter 1` it chooses a random bit i and runs the algorithm TCKG(1`, i),
thus obtaining a couple (pk, tk). Next, it chooses a random message a in the
message space, a random nonce s and sets c = Cpk(a, s). B, outputs (pk, c) as
the public key for a one time signature scheme. Notice that, such a public key,
is distributed as it should, because of the fact that the public keys produced by
TCKG is perfectly indistinguishable, with respect to those generated by CKG.

Now, whenever F asks a signature query on some message m (which is dif-
ferent from a with overwhelming probability), B uses its knowledge of (one)
trapdoor to generate a random nonce r such that c = Cpk(m, r). Moreover, be-
ing such an r generated using one a valid trapdoor, it is correctly distributed.
If, at some point, F outputs a valid forgery m′, r′ (with r 6= r′), B uses this
forgery to break the collision resistance of the hash function as follows. First,
notice that, by property 2 of collision resistance for double trapdoor chameleon
hashing, there exists an efficient extractor A, that receiving in input a valid col-
lision outputs one of the two trapdoors. B invokes such an algorithm, on input
(m,m′, r, r′) and obtains back a trapdoor tkj , which is different from tki with
probability 1/2. This is because, the collision produced by F is independent from
the trapdoor held by B in a strong information theoretic sense (simply because,
the distribution of collision property of DTCHs imposes that the distribution of
the openings is the uniform one, no matter what trapdoor one uses).



D Hash functions

Fully Collision Resistant (FCR) hash functions: Consider a family H =
{hfcr(·)} with arbitrary input and ` bit output. We say that H is fully collision
resistant if for a random element of the family hfcr(·) ∈R H it is hard to find
x 6= y such that hfcr(x) = hfcr(y).

Target Collision Resistant (TCR) hash functions6: Consider a family
H = {htcr(k, ·)}k (we are making explicit the fact that an element of the family
is parametrized by a key k) with arbitrary input and ` bit output. We say that
H is target collision resistant if it is hard for the attacker to win the following
game:

1. the attacker choose a message x;
2. a random key k is chosen;
3. the attacker outputs y 6= x such that htcr(k, x) = htcr(k, y).

E Examples of chameleon hashing

– Discrete Log based: This construction is from [4]. Let G be a group of
prime order q where membership test and multiplication can be performed
efficiently, and in which the discrete logarithm is hard.
• Key setup: choose g at random in G and compute h = gx mod p, with
x chosen at random in Zq; the public key is pk = (g, h), the secret key
is x;

• Function evaluation: given a message m and randomness r in Zq, the
function is computed as Cpk(m, r) = gmhr;

• Chameleon property: given a commitment c = gmhr, the message
m, the input randomness r, the trapdoor key x and a different message
m′ 6= m, we have that m + xr = m′ + xr′ mod q, so we can compute
r′ = r + (m−m′)x−1 mod q.

As it can be seen, the collision-finding algorithm requires the computation
of a single multiplication (once one stores directly the value x−1 mod q).
A typical implementation of the group G is to consider a subgroup of or-
der q in Z∗p where p, q are primes such that q|(p − 1). Reasonable security
parameters are |p| = 1024 and |q| = 160.

– RSA based: This construction is from [8, 10]. Let N be the product of
two large primes p, q (reasonable security parameter is |p| = |q| = 512); we
consider the group ZN .
• Key setup: let e be a prime number relatively prime to φ(N) = (p −

1)(q − 1), and s a random element of Z∗N . Compute d = e−1 mod φ(N);
the public key is pk = (N, s, e), the secret key is σ = sd mod N ;

6 They are also known as universal one-way or second preimage collision resistant hash
functions



• Function evaluation: given a message m ∈ [1..e− 1] and randomness
r in Z∗N , the function is computed as Cpk(m, r) = smre mod N ;

• Chameleon property: given a commitment c = smre, the message
m, the input randomness r, the trapdoor key σ and a different message
m′ 6= m, we have that smre = sm

′
r′
e mod N , so we can compute r′ =

rσm−m
′

mod N .

F A discrete log-based double trapdoor commitment
scheme

Here we briefly recall the double trapdoor commitment scheme given in [6] and
then we discuss further applications of such a scheme.

Key Generation. Consider a cyclic group G of prime order q (with |q| = ` the
security parameter) like before. Next, denoting with g a generator of G, choose
two random values x, y ∈ Zq and sets h1 = gx and h2 = gy. The public key is
(G, q, g, h1, h2) the private key is (x, y).

The Commitment Function. To commit to a message m ∈ Zq, we use two
random values r, s ∈R Z∗q and set

C(m, r, s) = gmhr1h
s
2

Theorem 6. Under the assumption that computing discrete logarithms is hard,
the above function C is a double trapdoor commitment scheme.

Proof. We prove this theorem by showing that the three main properties of
double trapdoor chameleon hash functions are satisfied.

Distribution of keys. Here we show the details of the TCKG algorithm. On
input 1` and a bit i, it chooses two random generators g, hi⊕1 ∈ G, a random
tki ∈ Z∗q and sets, hi = gtki . The public key is set as (G, q, g, h1, h2) the trapdoor
is tki. It is trivial to verify that all the required properties are satisfied.

Collision resistance. We prove this by contradiction. We assume there ex-
ists an adversary A that can find a collision in the proposed double trapdoor
commitment scheme with non-negligible probability ε. Then we show how to
build a simulator B that can solve the Discrete Logarithm (DLog) problem with
non-negligible probability at least ε/6. A finds a collision if, given the pub-
lic key pk, it outputs two triples (m, r, s), (m′, r′, s′) with m 6= m′ such that
Cpk(m, r, s) = Cpk(m′, r′, s′). We observe that at least one of the following con-
ditions must hold: (1) r 6= r′ or (2) s 6= s′. We can distinguish between three
types of collisions:

Type I m 6= m′, r 6= r′, s 6= s′

Type II m 6= m′, r = r′, s 6= s′

Type III m 6= m′, r 6= r′, s = s′



Thus A outputs a collision of either type I, type II or type III with probability
at least ε/3. Now we describe a simulator B that uses such collisions to solve the
DLog problem.
In the first phase B receives in input two primes p, q such that q|p−1, a generator
g of a cyclic subgroup G of Z∗p of order q and an element X ∈ G. The aim of B
is to output x ∈ Z∗q such that gx = X.
B has to construct the public key for the double trapdoor commitment scheme.
First it flips a binary coin β. If β = 0 B bets on the fact that A will provide a
collision of type I or III (where condition 1 holds true). Otherwise if β = 1 it
bets on the fact that the received collision is of type I or II (it satisfies condition

2). B chooses random y
$← Z∗q . If β = 0 it sets h1 = X,h2 = gy, otherwise it

sets h1 = gy, h2 = X. It gives PK = (G, q, g, h1, h2) to A. Then A produces
a collision (m, r, s), (m′, r′, s′). Now we distinguish between the three types of
collisions described above.

Type I collision. In this case B can solve the DLog problem with non-negligible
probability ε/3. Indeed if β = 0 B outputs x = m′−m+y(s′−s)

r−r′ mod q as the

discrete logarithm of X. Otherwise if β = 1 B outputs x = m′−m+y(r′−r)
s−s′ mod q.

Type II collision. In this case if β = 0 B loses its initial bet and fails. Other-
wise if β = 1 it computes x = m′−m

s−s′ mod q. Thus with probability at least ε
3

1
2

B solves the DLog problem.

Type III collision. This case is similar to the previous. If β = 1 B loses its
initial bet and fails. Otherwise if β = 0 it computes x = m′−m

r−r′ mod q. Thus with
probability at least ε

3
1
2 the simulator can find the discrete logarithm of X.

Distributions of Collisions. We consider the two distributions:

{m,m′, r, s← Z∗q , : Coll(tk1,m,m
′, r, s)}

{m,m′, r, s← Z∗q , : Coll(tk2,m,m
′, r, s)}

In the first distribution Coll outputs a value (r′, s) such that r′ = m−m′
x +r mod q.

We observe that s is uniformly distributed in Z∗q and if r is uniformly distributed
in Z∗q , then also r′ is uniformly distributed in Z∗q . In the second distribution Coll

outputs a pair (r, s′) such that s′ = m−m′
y + s mod q. If s is uniform in Z∗q ,

then also s′ is uniform in Z∗q . Thus, both the two distributions are perfectly
indistinguishable from uniform in Z∗q .



Table 1. Results of the experimental tests

N. Settings KeyGen
time

Off-line
sign
time

On-line
sign
time

Verif.
time

Temp.
data
size

Sign.
size

1 GHR-OTS ots {l, t, p} = 80, 4, 1 5901.603 12.841 0.469 7.986 2944 2944

2 GHR-OTS ots {l, t, p} = 80, 8, 1 5895.344 17.813 2.860 10.353 2144 2144

3 GHR-OTS ots {l, t, p} = 80, 8, 8 5512.062 17.832 1.266 10.383 8304 2144

4 GHR-OTS ots {l, t, p} = 80, 10, 1 6202.157 30.351 8.866 16.278 1984 1984

5 GHR-OTS ots {l, t, p} = 80, 10, 5 4929.411 30.405 7.057 16.306 4864 1984

6 GHR-OTS ots {l, t, p} = 80, 10, 10 5076.828 30.381 3.791 16.270 8464 1984

7 GHR-OTS ots {l, t, p} = 96, 4, 1 4893.636 13.009 0.532 8.027 3680 3680

8 GHR-OTS ots {l, t, p} = 96, 8, 1 6123.729 19.037 3.431 10.983 2528 2528

9 GHR-OTS ots {l, t, p} = 96, 8, 8 5386.401 19.032 1.509 11.153 11264 2528

10 GHR-OTS ots {l, t, p} = 96, 12, 1 6318.599 85.410 35.432 42.556 2144 2144

11 GHR-OTS ots {l, t, p} = 96, 12, 6 5076.328 85.484 28.273 42.613 6464 2144

12 GHR-OTS ots {l, t, p} = 96, 12, 12 6109.271 85.495 14.990 42.548 11648 2144

13 GHR-OTS ots {l, t, p} = 112, 4, 1 5687.215 13.173 0.594 8.112 4544 4544

14 GHR-OTS ots {l, t, p} = 112, 8, 1 4670.010 20.148 3.971 11.498 2976 2976

15 GHR-OTS ots {l, t, p} = 112, 8, 8 4831.965 20.186 1.759 11.446 14736 2976

16 GHR-OTS ots {l, t, p} = 112, 16, 8 5204.409 1029.727 390.909 493.273 8464 2192

17 GHR-OTS ots {l, t, p} = 112, 16, 16 5951.515 1029.443 200.213 492.931 15632 2192

18 GHR-DL tc {p, q} bits = 1024, 160 7102.520 14.267 0.033 11.551 1184 1184

19 GHR-RSA tc {n, e} bits = 1024, 160 6037.322 14.305 11.864 11.624 2048 2048

20 GHR-DL2 tc {p, q} bits = 1024, 160, tcr bits = 80 5563.434 14.227 0.157 10.775 1264 1264

21 GHR-DL2 tc {p, q} bits = 1024, 160, tcr bits = 96 5989.609 14.291 0.157 11.050 1280 1280

22 GHR-RSA2 tc {n, e} bits = 1024, 80, tcr bits = 80 5479.807 13.779 11.977 9.805 2128 2128

23 GHR-RSA2 tc {n, e} bits = 1024, 96, tcr bits = 96 5758.465 13.957 11.972 10.206 2144 2144

24 CS-OTS tcr bits = 80, ots {l, t, p} = 80, 4, 1 4457.142 17.880 0.466 3.616 3105 3105

25 CS-OTS tcr bits = 80, ots {l, t, p} = 80, 8, 1 5167.754 22.902 2.857 5.970 2305 2305

26 CS-OTS tcr bits = 80, ots {l, t, p} = 80, 8, 8 6389.489 22.939 1.296 5.950 8465 2305

27 CS-OTS tcr bits = 80, ots {l, t, p} = 80, 10, 1 5076.968 35.298 8.847 11.886 2145 2145

28 CS-OTS tcr bits = 80, ots {l, t, p} = 80, 10, 5 5314.612 35.290 7.080 11.858 5025 2145

29 CS-OTS tcr bits = 80, ots {l, t, p} = 80, 10, 10 5313.972 35.375 3.747 11.872 8625 2145

29 CS-OTS tcr bits = 96, ots {l, t, p} = 96, 4, 1 7192.007 18.192 0.547 3.834 3841 3841

30 CS-OTS tcr bits = 96, ots {l, t, p} = 96, 8, 1 5670.858 24.185 3.425 6.719 2689 2689

31 CS-OTS tcr bits = 96, ots {l, t, p} = 96, 8, 8 5006.019 24.040 1.526 6.709 11425 2689

32 CS-OTS tcr bits = 96, ots {l, t, p} = 96, 12, 1 5466.489 90.280 35.339 38.353 2305 2305

33 CS-OTS tcr bits = 96, ots {l, t, p} = 96, 12, 6 5536.198 90.348 28.190 38.417 6625 2305

34 CS-OTS tcr bits = 96, ots {l, t, p} = 96, 12, 12 5340.548 91.437 14.571 38.392 11809 2305

35 CS-OTS tcr bits = 112, ots {l, t, p} = 112, 4, 1 4736.900 18.580 0.600 4.102 4705 4705

36 CS-OTS tcr bits = 112, ots {l, t, p} = 112, 8, 1 5894.944 25.416 3.975 7.524 3137 3137

37 CS-OTS tcr bits = 112, ots {l, t, p} = 112, 8, 8 5210.748 25.881 1.759 7.512 14897 3137

38 CS-OTS tcr bits = 112, ots {l, t, p} = 112, 16, 8 4789.552 1035.058 387.609 491.539 8625 2353

39 CS-OTS tcr bits = 112, ots {l, t, p} = 112, 16, 16 5795.599 1036.105 204.137 491.250 15793 2353

40 CS-DL tcr bits = 96, tc {p, q} bits = 1024, 160 7551.952 19.415 0.034 7.349 1345 1345

41 CS-RSA tcr bits = 96, tc {n, e} bits = 1024, 160 6150.725 19.539 11.875 7.366 2209 2209

42 CS-DL2 tcr bits = 80, tc {p, q} bits = 1024, 160 5758.045 19.186 0.150 6.354 1425 1425

43 CS-DL2 tcr bits = 96, tc {p, q} bits = 1024, 160 6768.931 19.265 0.150 6.696 1441 1441

44 CS-RSA2 tcr bits = 80, tc {n, e} bits = 1024, 80 5732.029 18.310 11.965 5.421 2289 2289

45 CS-RSA2 tcr bits = 96, tc {n, e} bits = 1024, 96 6076.316 18.586 11.967 5.987 2305 2305



t `′ d′ d gain (d− d′)

1 81 13041 12800 -241

2 81 6561 12800 6239

3 81.4150 4423.6 12800 8376.4

4 82 3362 12800 9438

5 82.6781 2728.4 12800 10071.6
Table 2. Experimental results with parameters ` = 80, m = 2`


